DOI: 10.14489/td.2017.01.pp.016-023
Ivashov S. I., Chizh M. A., Zhuravlev A. V., Razevig V. V., Mil’yachenko A. A., Kologov A. V. THE CHOICE OF MICROWAVE FREQUENCY BAND IN THE DIAGNOSIS OF COMPOSITES DETAILS WITH USE OF HOLOGRAPHIC RADAR (pp. 16-23)
Abstract. There is a burst of applications of composite materials and structures in aerospace industry in recent years. The composites have many advantages over traditional metal alloys. They have, as a rule, better strength/weight ratio, withstand to unfavorable weather conditions and aggressive environments. Also, corrosion processes, which often damage the metal articles, do not affect them. Traditional methods of ultrasonic diagnostics are ineffective for porous composite such as polyurethane foam insulation or silicate fiber tiles, used in American Space Shuttle and Russian spacecraft “Buran”, as well as for honeycomb fiberglass construction details due to high levels of acoustic wave attenuation in them. In these cases, microwave holographic subsurface imaging can be a reasonable alternative to ultrasonic method. A specially designed test setup was created that includes a vector network analyzer for generating and receiving signals and an electromechanical scanner for moving the studied samples. Operational frequency band of the vector network analyzer provides opportunity to carry out experiments in the broad range from 10 MHz to 24 GHz. Specialized software was developed for the registration and reconstruction of complex multi-frequency holograms. Several composite samples were tested in the setup at different frequency ranges to study the frequency influence on the obtained results. All samples had preliminary produced defects. Comparison of the samples testing results and the defects maps showed that they were in a good coincidence.
Keywords: dielectric composite materials, holographic subsurface radar, microwave imaging, nondestructive testing.
S. I. Ivashov, M. A. Chizh, A. V. Zhuravlev, V. V. Razevig (Bauman Moscow State Technical University, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. A. Mil’yachenko, A. V. Kologov (Federal State Unitary Enterprise “Scientific Production Association “Tekhnomash”, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Columbia accident investigation board. (2003). Report. 2. Morring F. (2003). Putting it in complex. Aviation Week & Space Technology, April 7, pp. 30-31. 3. Shrestha S., Kharkovsky S., Zoughi R., and Hepburn F. (2005). Microwave and millimeter wave nondestructive evaluation of the space shuttle exTernal tank insulating foam. Materials Eval., 63(3), pp. 339-344. 4. Ivashov S. I., Vasiliev I. A., Bechtel T. D., Snapp C. (2007). Comparison between impulse and holographic subsurface radar for NDT of space vehicle structural materials. Progress in Electromagnetics Research Symposium. Beijing, China, 26 – 30 March 2007. Beijing, pp. 1816-1819. 5. Ivashov S., Razevig V., Vasiliev I. et al. (2015). Holographic subsurface radar for diagnostics of cryogenic fuel tank thermal insulation of space vehicles. NDT & E International, 69, pp. 48-54. doi: 10.1016/j.ndteint. 2014.10.002 6. Ivashov S. I., Razevig V. V., Bechtel T. D. et al. (2015). Microwave holography for NDT of dielectric structures. Proc. of the IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2015), Tel-Aviv, Israel, 2 – 4 November 2015. 7. Ivashov S. I., Razevig V. V., Vasiliev I. A. et al. (2011). Holographic subsurface radar of RASCAN type: development and applications. IEEE Journal of Selected Topics in Earth Observations and Remote Sensing, 4(4), pp. 763-778. doi: 10.1109/JSTARS.2011.2161755 8. Radiolocator «RASKAN-5/4000(7000)»: user's manual. Available at: http://rascan.ru/download/Installation.mp4 9. Ivashov S. I., Razevig V. V., Vasil'ev I. A., Shitikov B. C. (2014). Diagnostics of thermal insulation and heat protection coating of space ships and rockets by holographic subsurface radar «RASCAN-5». Kontrol'. Diagnostika, (12), pp. 52-61. [in Russian language] doi: 10.14489/td.2014.12. pp.052-061 10. «RASCAN-4»: videoclip. Available at: http://www.rslab.ru/downloads/scan.avi 11. Pozar D. M. (2012). Microwave engineering. 4th ed. John Wiley & Sons, Inc. 12. Zhuravlev A., Ivashov S., Razevig V., Vasiliev I. (2014). Shallow depth subsurface imaging with microwave holography. Proc. of SPIE Symp. on Defense and Security, Radar Sensor Technology XVIII Conf. Baltimore, Maryland, USA, May 5 – 7, 2014, Vol. 9072, pp. 90720X-1...9. 13. Gonzalez R. C., Woods R. E. (2002). Digital image processing. 2nd ed. Upper Saddle River, New Jersey: Prentice-Hall, Inc. 14. Razevig V. V., Ivashov S. I., Vasiliev I. A. et al. (2010). Advantages and restrictions of holographic subsurface radars. Experimental Evaluation. Proc. of the XIII Intern. Conf. on Ground Penetrating Radar, Lecce, Italy, 21 – 25 June 2010, pp. 657-662.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please fill out the form below:
|