Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 01 | 2025
2018, 10 October

DOI: 10.14489/td.2018.10.pp.004-018

 

Kozlov А. V., Pichugin N. K., Samokrutov А. А., Shevaldykin V. G.
FIELDS OF APPLICATION AND PRINCIPLE TYPES OF TRANSDUCERS WITH DRY POINT CONTACT IN ULTRASONIC NONDESTRUCTIVE TESTING
(pp. 4-18)

Abstract. The paper reviews methods of application of transducers with dry acoustic contact which are intended for ultrasonic testing along with historical retrospective of their development. Modern types of transducers with dry point contact which allow solution of up-to-date problems of tomography of concrete structures and metal pipe ultrasonic control without coupling liquid are considered. Only two dry point contact transducers give the opportunity to measure the near surface ultrasound velocities, which are directly connected to the elastic properties of the studied material. Dry point contact transducers and ultrasonic arrays consisting of them allow one to construct effective devices for nondestructive testing of concrete, plastics, composites and other materials which are hard cases for conventional ultrasonic testing techniques. The most known applications include thickness measuring of concrete structures, flaw and iron reinforcement detection in the structuresand tomographic imaging of concrete objects. The perspective of higher frequency dry point contact transducer construction and applications in ultrasonic testing of metals with good resolution is also outlined in the presented work.

Keywords: dry point contact transducers, ultrasonic testing.

 

A. V. Kozlov, N. K. Pichugin, A. A. Samokrutov, V. G. Shevaldykin (Acoustic Control Systems, Ltd., Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

 

1. Barhatov L. A., Nesterova V. A. (1994). The use of elastic protectors for the introduction of ultrasonic vibrations in products. Defektoskopiya, (11), pp. 70-77. [in Russian language]
2. Samokrutov A. A., Shevaldykin V. G., Alekhin S. G., Suvorov V. A. (2014). Ultrasonic low-frequency scanner-topograph A1050 PLANESCAN. Kontrol'. Diagnostika, (12), pp. 49-51. [in Russian language] DOI: 10.14489/td.2014.12. pp.049-051
3. Samokrutov A. A., Shevaldykin V. G. (2016). Search for shock damages of airplane skin from composite materials by acoustic method. V mire nerazrushayuschego kontrolya, 19(4), pp. 29-32. [in Russian language]
4. Robinson A. M., Drinkwater B. W., Allin J. (2003). Dry-coupled low-frequency ultrasonic wheel probes: application to adhesive bond inspection. NDT & E International, 36(1), pp. 27-36.
5. Sachse W., Kim K. Y. (1987). Point-source/point-receiver materials testing. Review of Progress in Quantitative Nondestructive Evaluation. Boston: Springer US, pp. 311-320.
6. Kim K. Y., Sachse W., Every A. G. (1993). On the determination of sound speeds in cubic crystals and isotropic media using a broadband ultrasonic point source/point receiver method. The Journal of the Acoustical Society of America, 93(3), pp. 1393-1406.
7. Kim K. Y., Niu L., Castagnede B., Sachse W. (1989). Miniaturized capacitive transducer for detection of broadband ultrasonic displacement signals. Review of Scientific Instruments, 60(8), pp. 2785-2788.
8. Surappa S., Satir S., Degertekin F. L. (2017). A capacitive ultrasonic transducer based on parametric resonance. Applied Physics Letters, 111(4), pp. 43503.
9. Degertekin F. L. (2017). Microscale systems based on ultrasonic MEMS – CMOS integration. 19th International Conference on Solid-state Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, pp. 397-401.
10. Cheng Y., Gao F., Hanif A. et al. Development of a capacitive sensor for concrete structure health monitoring. Construction and Building Materials, 149, pp. 659-668.
11. Lange Yu. V. (1991). Acoustic low-frequency methods and means of nondestructive testing of multilayer structures. Moscow: Mashinostroenie. [in Russian language]
12. Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (2003). Ultrasonic low-frequency piezo transducers with dry point contact and their application for nondestructive testing. Kontrol'. Diagnostika, (2), pp. 30-39. [in Russian language]
13. Proctor T. M. (1982). An improved piezoelectric acoustic emission transducer. The Journal of the Acoustical Society of America, 71(5), pp. 1163-1168.
14. Proctor T. M. (1980). Improved piezoelectric transducers for acoustic emission signal reception. The Journal of the Acoustical Society of America, 68(S1), pp. S68.
15. Godfrey M. W., Mahmood L. A., Emmony D. C. (1986). An improved design of point contact transducer. NDT International, 19(2), pp. 91-93.
16. Greenspan M. (1987). The NBS conical transducer: Analysis. The Journal of the Acoustical Society of America, 81(1), pp. 173-183.
17. Lee Y. C., Kuo S. H. (2004). A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate. IEEE Transactions on UFFC, 51(1), pp. 114-120.
18. Wu T.-T., Fang J. (1997). A new method for measuring in situ concrete elastic constants using horizontally polarized conical transducers. The Journal of the Acoustical Society of America, 101(1), pp. 330-336.
19. Wu T.-T., Liu P.-L. (1998). Advancement on the nondestructive evaluation of concrete using transient elastic waves. Ultrasonics, 36(1 – 5), pp. 197-204.
20. Carino N. J., Hsu N.N., Sansalone M. (1986). A point source – point receiver, pulseecho technique for flaw detection in concrete. Journal American Concrete Institute, 83(2), pp. 199-208.
21. Cawley P. (1984). The impedance method of non-destructive inspection. NDT International, 17(2), pp. 59-65.
22. Degertekin F. L., Khuri-Yakub B. (1997). Lamb wave excitation by Hertzian contacts with applications in NDE. IEEE Transactions on UFFC, 44(4), pp. 769-779.
23. Degertekin F. L., Khuri-Yakub B. (1996). Hertzian contact transducers for nondestructive evaluation. The Journal of the Acoustical Society of America, 99(1), pp. 299-308.
24. Bondarenko A. I. (2010). Dry acoustic contact in the "converter-product" system in low-frequency flaw detection as a contact problem of the theory of elasticity. Tekhnicheskaya diagnostika i nerazrushayuschiy kontrol', 3, pp. 14-18. [in Russian language]
25. Bondarenko A. I., Prachev A. A., Monchenko E. V. et al. (2011). Evaluation of the properties of dry point contact in low-frequency flaw detection of multilayer structures. X International Scientific and Technical Conference "AVIA-2011, (pp. 1-4. Kiev. [in Russian language]
26. Bondarenko A. I. (2010). Methods of low-frequency acoustic defectoscopy with dry contact in the "converter-product" system. Tekhnicheskaya diagnostika i nerazrushayuschiy kontrol', (1), pp. 38-44. [in Russian language]
27. Galin L. A. (Ed.), Abramyan B. L., Aleksandrov V. M., Amenadze Yu. A. et al. (1976). The development of the theory of contact problems in the USSR. Moscow: Nauka. [in Russian language]
28. McLaskey G. C., Glaser S. D. (2010). Hertzian impact: Experimental study of the force pulse and resulting stress waves. The Journal of the Acoustical Society of America, 128(3), pp. 1087-1096.
29. Lange Yu. V. (1972). Frictional noise in the case of defectoscopy by impedance and bicycle-symmetric methods. Defektoskopiya, (3), pp. 33-38. [in Russian language]
30. Miller G. F., Pursey H. (1955). On the partition of energy between elastic waves in a semiinfinite solid. Proceedings of the Royal Society of London A, 233(1192), pp. 55-69.
31. Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (2002). Ultrasonic low-frequency transducers with dry dot contact and their applications for evaluation of concrete structures. Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp. 793-798.
32. Kozlov A. V., Kozlov V. N. (2015). Development and current state of methods for non-destructive testing and acoustic tomography of concrete. Defektoskopiya, (6), pp. 3-14. [in Russian language]
33. Concretes. Ultrasonic method for determining strength. (2012). Ru Standard No. GOST 17624–2012. Moscow. [in Russian language]
34. Kozlov V. N., Podol'skiy V. I., Samokrutov A. A., Shevaldykin V. G. (2000). Assessment of the condition of reinforced concrete supports of the contact network by an ultrasonic surface sounding device. V mire NK, (1), pp. 46-47. [in Russian language]
35. Bogas J. A., Gomes M. G., Gomes A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), pp. 962-972.
36. Demirboğa R., Türkmen İ., Karakoç M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high volume mineral-admixtured concrete. Cement and Concrete Research, 34(12), pp. 2329-2336.
37. Brigante M., Sumbatyan M. A. (2013). Acoustic methods in non-destructive control of concrete: a review of foreign publications in the field of theoretical studies. Defektoskopiya, (2), pp. 52-67. [in Russian language]
38. Vaynshtok I. I., Goyhman A. YA., Yamschikov V. S. (1976). Ultrasonic testing of strength of concrete and reinforced concrete structures under load. Akusticheskiy zhurnal, 22(4), pp. 602-604. [in Russian language]
39. Kozlov V. N., Samokrutov A. A., Shevaldykin V. G. (2004). Ultrasonic low-frequency composite transducer with switching of type of waves. Ru Patent No. 2224250. Russian Federation. [in Russian language]
40. Samokrutov A. A., Shevaldykin V. G. (2005). Ultrasonic control of rails by a waveguide echo method. Kontrol'. Diagnostika, (7), pp. 16-19. [in Russian language]
41. Shevaldykin V. G., Kozlov V. N., Samokrutov A. A. (1998). Inspection of concrete by ultrasonic pulse-echo tomograph with dry contact. 7th European Conference on Non-destructive testing (ECNDT). Copenhagen, Denmark.
42. Samokrutov A. A., Shevaldykin V. G. (2008). Ultrasonic thickness gauge of concrete. V mire nerazrushayuschego kontrolya, 40(2), pp. 16-20. [in Russian language]
43. Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (2001). Transverse ultrasonic waves in echopulse defectoscopy of concrete of pipeline supports. 3rd International Conference "Diagnostics of Pipelines", Moscow, March 21-26: Theses of reports. Moscow. [in Russian language]
44. Kozlov V. N., Samokrutov A. A., Shevaldykin V. G. (2002). Ultrasonic flaw detection of concrete by the echo method: state and prospects. V mire nerazrushayuschego kontrolya, 16(2), pp. 6 – 10. [in Russian language]
45. Samokrutov A. A., Kozlov V. N. (2003). Ultrasonic Low-Frequency Short Pulse Transducers with Dry Point Contact. Development and Application. International Symposium NDT-CE. September 16-19. Berlin.
46. Samokrutov A. A., Shevaldykin V. G. (2008). "Acoustography" of concrete: non-virtual reality. V mire nerazrushayuschego kontrolya, 42(4), pp. 8-12. [in Russian language]
47. Kovalev A. V., Kozlov V. N., Samokrutov A. A. et al. (1990). Pulse echo method for controlling concrete. Interference and spatial selection. Defektoskopiya, (2), pp. 29-41. [in Russian language]
48. Shvabovich K., Suvorov V. A. (2014). Non-destructive testing and construction of the bottom surface profile using ultrasonic tomography methods. Defektoskopiya, (2), pp. 66-78. [in Russian language]
49. De la Haza A., Samokrutov A. A., Shevaldykin V. G. (2015). Diagnosis of reinforced concrete tunnel walls using an ultrasound tomograph. V mire nerazrushayuschego kontrolya, 68(2), pp. 36-39. [in Russian language]
50. Dmitriev K. V., Zotov D. I., Rumyantseva O. D. Principles of obtaining and processing acoustic signals in linear and nonlinear tomographs. Izvestiya RAN Seriya Fizicheskaya, 81(8), pp. 1014-1019. [in Russian language]
51. Wiggenhauser H., Samokrutov A., Mayer K. et al. (2017). Large aperture ultrasonic system for testing thick concrete structures. Journal of Infrastructure Systems, 23(1), pp. B4016004.
52. Mayer K., Krause M., Wiggenhauser H., Milmann B. (2015). Investigations for the improvement of the SAFT imaging quality of a large aperture ultrasonic system. International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE). Berlin, Germany.
53. Snezhkov D. Yu., Leonovich S. N. (2016). Monitoring of erected and exploited reinforced concrete structures by non-destructive methods. Minsk: BNTU. [in Russian language]
54. Markin V. B., Vorobey V. V. (2015). Quality control of manufacturing and technology of repair of composite structures. Barnaul: MC EOR. [in Russian language]
55. Kovalev A. V., Shevaldykin V. G., Kozlov V. N. et al. (1989). Ultrasonic inspection of products from largescale materials with unilateral access. Pribory i sistemy upravleniya, (5), pp. 9-10. [in Russian language]
56. Pochtovik G. Ya., Lipnik V. G., Filonidov A. M. (1977). Ultrasonic flaw detection in power engineering. Moscow: Energiya. [in Russian language]
57. Kozlov V. N., Shevaldykin V. G., Yakovlev N. N. (1988). Experimental evaluation of ultrasonic attenuation in concrete. Defektoskopiya, (2), pp. 67-75. [in Russian language]
58. Shevaldykin V. G. (1985). No-standard thickness gauging based on volumetric acoustic waves. Defektoskopiya, (9), pp. 19-26. [in Russian language]
59. Klyuev V. V., Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (1998). New hardware-methodical capabilities of ultrasonic sounding of composites and plastics. Zavodskaya laboratoriya, 64(4), pp. 29-39. [in Russian language]
60. Viktorov I. A. (1981). Sound surface waves in solids. Moscow: Nauka. [in Russian language]
61. Samokrutov A. A., Shevaldykin V. G. (2010). Possibilities and prospects of acoustic scanner-defectoscope. Territoriya neftegaz, (12), pp. 61-63. [in Russian language]
62. Voronchihin S. Yu., Samokrutov A. A., Sedelev Yu. A. (2016). Assessment of technical condition of technological pipelines of compressor stations of PJSC "Gazprom" using robotic scanners. Vesti gazovoy nauki, 27(3), pp. 120-130. [in Russian language]
63. Samokrutov A. A., Shevaldykin V. G. (2017). Investigation of the propagation of ultrasound in layered composite materials. Zavodskaya laboratoriya. Diagnostika materialov, 83(1), Vol. 1, pp. 48-51. [in Russian language]

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.10.pp.004-018

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования