Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 01 | 2025
2018, 10 October

DOI: 10.14489/td.2018.10.pp.044-049

 

Sokolova A. G., Balitsky F. Yа., Ivanova M. A., Shirman A. R.
REGRESSION FUNCTIONS AND OTHER PROBABILITY CHARACTERISTICS OF VIBRATIONS AS TOOLS TO ENHANCE CONDITION MONITORING SYSTEMS OF CENTRIFUGAL COMPRESSORS. PART 2
(pp. 44-49)

Abstract. The same approach to advanced machinery condition monitoring with probability vibration features application, which was originated in the Part I, is continued and expanded with numerical information of stochastic interdependence of vibration signals in the second part of the paper. It is no secret that any machinery fault manifests itself by changing vibration characteristics from usually linear (or quasi-linear) ones to significantly nonlinear ones. If it were possible to measure simultaneously both the source vibration signal (input) and vibration signal of response on it (output), then the best way to understand all about these changes is to investigate cross-regression function shapes and the numerical information of stochastic interdependence for these signals. The “input” information unfortunately is unapproachable in vibrodiagnostics approach, so one has to use indirect signs, i.e. features of two different “output” signals. The vibration cross-regression functions along with numerical correlation data, directly describing the degree of nonlinear distortion of machine transient characteristics are proposed as helpful additional effective diagnostic tool. As it is shown, these parameters used for the centrifugal compressor condition monitoring are linear ones under normal compressor condition, and nonlinear ones under its journal bearing rough fault condition.

Keywords: vibration diagnostics, rotary machinery, journal bearing, relative shaft vibration, probability distribution, stochastic liaison, cross regression function, correlation coefficient and correlation ratio.

 

A. G. Sokolova, F. Yа. Balitsky, M. A. Ivanova (Federal Budget-Funded Research Institute for Machine Science named after A. A. Blagonravov of Russian Academy of Sciences (IMASH RAN), Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. R. Shirman (The Limited Liability Company “Spectrum Engineering”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Klyueva V. V. (Ed.), Balitskiy F. Ya., Barkov A. V., Barkova N. A. et al. (2006). Non-destructive testing: textbook. In 8 volumes. Vol. 7. Book 2. Vibrodiagnostics.2nd Ed. Moscow: Mashinostroenie. [in Russian language]
2. Genkin M. D., Sokolova A. G. (1987). Vibroacoustic diagnostics of machines and mechanisms. Moscow: Mashinostroenie. [in Russian language]
3. Mirskiy G. Ya. (1982). Characteristics of stochastic relationships and their measurement. Moscow: Energoizdat. [in Russian language]
4. Sokolova A. G., Balitskiy F. Ya., Ivanova M. A., Shirman A. R. (2018). Use of regression functions and other probabilistic characteristics for vibrodiagnostics of compressor equipment. Part 1. Kontrol'. Diagnostika, (8), pp. 4-13. DOI: 10.14489/ td.2018.08.pp.004-013 [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.10.pp.044-049

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования