DOI: 10.14489/td.2019.03.pp.038-047
Fedotov M. Yu., Budadin O. N., Vasil’ev S. A., Medvedkov O. I., Kozelskaya S. O. THE POSSIBILITIES OF CONTROLLING EXTERNAL MECHANICAL INFLUENCES BY A FIBER-OPTIC DIAGNOSTIC SYSTEM EMBEDDED INTO CARBON FIBER REINFORCED PLASTICS OF DIFFERENT TYPES (pp. 38-47)
Abstract. The estimation of working capacity and results of the control by the integrated fiber-optic system of diagnostics of CFRP samples on the basis of polymer matrices and reinforcing fillers of different types at shock impact, tests on the residual compressive strength after impact, long-term strength, low cycle and high-cycle fatigue are given. The ability of the sensor system to record the fact, determine the local impact zone and the occurrence of delamination, confirmed by the results of ultrasonic non-destructive testing, to maintain efficiency and confidently record data under static and cyclic loads is confirmed.
Keywords: fiber-optic system of diagnostics, fiber optic sensor, fiber Bragg grating, carbon fiber reinforced plastic, non-destructive testing, shock impact, long-term strength, low-cycle fatigue, high-cycle fatigue.
M. Yu. Fedotov (JSC RII «Spectrum», Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin (Central Research Institute for Special Machinery, Joint Stock Company, Khotkovo, Russia)
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. A. Vasil’ev, O. I. Medvedkov (Fiber Optics Research Center of the Russian Academy of Sciences (FORC RAS), Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozelskaya (Central Research Institute for Special Machinery, Joint Stock Company, Khotkovo, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Gnusin P. I., Vasil'ev S. A., Medvedkov O. I. et al. (2009). Using fiber gratings as sensitive elements in composite materials. Foton-ekspress, 78(6), pp. 90-91. [in Russian language] 2. Nazirov M. F., Zhukov Yu. A., Yakovitskaya S. Yu. (2015). Measurement of the deformed state of samples using fiber optic sensors embedded in the structure of a composite material. Voprosy oboronnoy tekhniki. Seriya 16. Tekhnicheskie sredstva protivodeystviya terrorizmu, (9–10), pp. 95-101. [in Russian language] 3. Zhelezina G. F., Sivakov D. V., Gulyaev I. N. (2008). Builtin control: from sensors to information composites. Aviatsionnaya promyshlennost', (3), pp. 46-50. [in Russian language] 4. Fedotov M. Yu., Sorokin K. V., Goncharov V. A. et al. (2013). Capabilities of sensor systems and intelligent PCM based on them. Vse materialy. Entsiklopedicheskiy spravochnik, (2), pp. 18-23. [in Russian language] 5. Ser'eznov A. N., Kuznetsov A. B., Luk'yanov A. V., Bragin A. A. (2018). Fiber-optical system for monitoring the state of aircraft structure made of composite material. Proceedings of the III Sectoral Conference on Measuring Equipment and Metrology for Aircraft Research, KIMILA 2018 Central Aerohydrodynamic Institute named after Professor N. Ye. Zhukovsky, pp. 588-598. Zhukovsky. [in Russian language] 6. Vincenzini P., Casciati F., Rizzo P. (2012). Smart Composite Device for Structural Health Monitoring. Advances in Science and Technology, Vol. 83, pp. 122-131. 7. Optical fiber sensor system. (2008). US Patent No. 6204920. 8. High-density structural health monitoring system and method. (2013). US Patent No. 8447530. USA. 9. Composite structure having an embedded sensing system. (2013). US Patent No. 2013048841. USA. 10. Larin A. A., Fedotov M. Yu., Buharov S. V., Reznichenko V. I. (2017). New applications of fiber optic sensor systems. Prikladnaya fotonika, (4), pp. 310-324. [in Russian language] 11. Method for embedding FBG (Fiber Bragg Grating) sensors into three-dimensional weaving composite material parts. (2012). CN Patent No. 102564332. China. 12. L'vov N. L., Habarov S. S., Gavrikov M. Yu., Fedotov M. Yu. (2018). Protective coatings for various purposes of the sensor installation site on the structure. Ru Patent No. 181835. Russian Federation. [in Russian language] 13. Fedotov M. Yu., Shienok A. M., Muhametov R. R., Gulyaev I. N. (2017). Study of the boundary between polymeric matrices with optical fibers in information composites. Voprosy materialovedeniya, (1), pp. 155-168. [in Russian language] 14. Fedotov M. Yu., Buharov S. V., Muhametov R. R. (2017). Study of protective coatings of fiber-optic sensors designed for integration into polymer composite materials. Konstruktsii iz kompozitsionnyh materialov, 148(4), pp. 61- 67. [in Russian language] 15. Muhametov R. R., Ahmadieva K. R., Deev I. S., Mahsidov V. V. (2016). Protective coating for fiber optic sensors. Uprochnyayuschie tekhnologii i pokrytiya, 141(9), pp. 29-34. [in Russian language] 16. Fedotov M. Yu. (2015). Concepts of creation and development trends of intellectual materials (review). Aviatsionnye materialy i tekhnologii, 34(1), pp. 71-80. [in Russian language] 17. Fedotov M. Yu., Goncharov V. A., Shienok A. M., Sorokin K. V. (2013). Study of flexural deformations of carbon fiber with fiber-optic sensors on Bragg gratings. Voprosy materialovedeniya, 74(2), pp. 139-147. [in Russian language] 18. Fedotov M. Yu., Shienok A. M., Gulyaev I. N. et al. (2015). Study of the impact of shock on the spectral characteristics of fiber-optic sensors based on fiber Bragg gratings integrated into a polymer composite material. Voprosy materialovedeniya, 84(4), pp. 100-108. [in Russian language] 19. Medvedkov O. I., Korolev I. G., Vasil'ev S. A. (2004). Recording fiber Bragg gratings in a circuit with a Lloyd interferometer and modeling their spectral properties. Preprint NTSVO IOF RAN, (6). [in Russian language] 20. Terentyev V. S., Kharenko D. S., Dostovalov A. V. et al. (2016). Fiber-optic sensors based on FBGs with increased sensitivity difference embedded in polymer composite material for separate strain and temperature measurements. Transforming the Future of Infrastructure through Smarter Information – Proceedings of the International Conference on Smart Infrastructure and Construction, ICSIC 2016, pp. 75-79. 21. Shishkin V. V., Terentyev V. S., Kharenko D. S. et al. (2016). Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs. Journal of Sensors, Vol. 2016, p. 3230968. 22. Kersey A. D., Davis M. A., Patrick H. J. et al. (1997). Fiber Grating Sensors. IEEE Journal of Lightwave Technology, LT-15(8), pp. 1442-1463. 23. L'vov N. L., Habarov S. S., Gavrikov M. Yu., Fedotov M. Yu. (2018). The output device of the fiber optic sensor from the composite. Ru Patent No. 179119. Russian Federation. [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2019.03.pp.038-047
and fill out the form
|