Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
18 | 11 | 2024
2019, 05 May

DOI: 10.14489/td.2019.05.pp.026-031

 

Kaledin V. O., Vyachkin E. S., Vyachkina Е. A., Budadin O. N., Kozelskaya S. O.
INVESTIGATION OF THE POSSIBILITY OF THERMAL CONTROL OF POLYMER COMPOSITE STRUCTURES WHILE HEATING BY THE INTERNAL SOURCE
(pp. 26-31)

Abstract. Dynamic temperature fields on the surface of a polymer composite material under the action of an internal heat source are considered. It is shown that the use of thermal control based on the measurement and analysis of the temperature field parameters allows detecting a defect (heat source) in the material and determining its depth and coordinates. The studies have shown the possibility of using thermal control to detect internal defects in products made of polymer composite materials when creating internal heat sources in the vicinity of defects with the use of modern thermograph systems that provide the registration of changing the temperature field of 0.1 deg and higher. The numerical solution using the finite element method and the time difference scheme is in good agreement with the analytical solution when choosing grid steps: the error is reduced to 2.4% already at a distance of three grid steps from the source. It is shown that on the basis of the measurement of the parameters of dynamic temperature fields, it is possible to determine the location of the depth of the defect (internal heating source) and its area coordinates that makes it possible significantly to extend the scope of application of thermal control.

Keywords: thermal control, thermal conductivity, composite materials, dynamic temperature fields, finite element method.

 

V. O. Kaledin, E. S. Vyachkin, Е. А. Vyachkinа (Novokuznetsk Institute (Branch) of Kemerovo State University, Novokuznetsk, Russia) E-mail:  Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin, S. O. Kozelskaya (Central Research Institute for Special Machinery, JSC, Khotkovo, Russia) E-mail:  Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Troitskiy V. A., Karmanov M. N., Troitskaya N. V. (2014). Non-destructive quality inspection of composite materials. Tekhnicheskaya diagnostika i nerazrushayuschiy kontrol', (3), pp. 29 – 33. [in Russian language]
2. Troitskiy V. A. (2008). Manual on radiography of welded joints. Kiev: Feniks. [in Russian language]
3. Murashov V. V. (2011). Testing multilayered glued constructions from polymeric composite materials. Klei. Germetiki. Tekhnologii, (10), pp. 16 – 23. [in Russian language]
4. Vavilov V. P., Horev V. S., Chulkov A. O. (2012). Study of the method of ultrasonic infrared crack testing in composite materials. Kontrol' i diagnostika. Spetsvypusk, pp. 197 – 201. [in Russian language]
5. Stoessel R., Wirjadi O., Godehardt M. (2012). Analysis of inner fracture surfaces in CFRP based on μ-CT image. Conference on Industrial Computed Tomography (ICT). Wels.
6. Shiryaev V. V., Horev V. S. (2011). Thermal testing of shock damage in CFRP using ultrasonic stimulation. Kontrol'. Diagnostika. Spetsvypusk, pp. 112 – 114. [in Russian language]
7. Gribov A. F., Zhidkov Е. N., Krasnov I. K. (2013). On the numerical solution of the inverse heat conduction problem. Inzhenerniy zhurnal: nauka i innovatsii, (9). [in Russian language]
8. Oden Dzh. (1976). Finite elements in nonlinear mechanics of continuous media. Moscow: Mir. [in Russian language]
9. Kaledin V. O., Shemetov V. A. (1995). Electrical exploration of coal seams using the finite element method using a reduced factorization scheme. Gorniy informatsionno-analiticheskiy byulleten', (5), pp. 33 – 36. [in Russian language]
10. Shemetov V. A. (1997). Modeling of direct current methods in electrical prospecting tasks for a complex section using the finite element method. Novokuznetsk. [in Russian language]
11. Karslou G., Еger D. (1964). Thermal conductivity of solids. Moscow: Nauka. [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.05.pp.026-031

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования