Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
30 | 04 | 2024
2019, 06 June

DOI: 10.14489/td.2019.06.pp.050-057

 

Moyseychik Е. А.
PASSIVE METHOD OF THERMAL NON-DESTRUCTIVE TESTING OF STEEL ELEMENTS AND PRODUCTS ON THE BASIS OF THE MECHANISM OF DEFORMATION HEAT GENERATION
(pp. 50-57)

Abstract. The features of heat generation and the basic capabilities of the passive method of thermal non-destructive testing of steel elements and products are considered. The mechanism of heat generation in steel is presented and the structure of the formula for changing its temperature during deformation is substantiated. It is shown that the diagnosis of steel elements in the passive mode should be carried out with the operation of heat sources in them, resulting from the force effects on the structure. The features of determining the stress in steel elements by the passive thermal method are considered. It is shown that the passive method of thermal non-destructive testing of steel structures loaded with forces continuously changing in time, under the action of which internal deformation sources of heat and surface temperature fields operate in potentially dangerous areas of the elements, allows the kinetics and anomalies of temperature fields to exercise health -plastic stages of steel, with the birth and development of destruction.

Keywords: steel elements, deformation heat generation, surface temperature, passive thermal control, technical diagnostics.

 

Е. А. Moyseychik (Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

 

 

1. Pustovoy V. N. (1992). Metal lifting machines. Destruction and prediction of residual resource. Moscow: Transport. [in Russian language]
2. Kotel'nikov V. V. (2009). Development of methods for thermal testing and diagnostics of the technical condition of metal structures of bridge cranes. Moscow: MGTU im. N. E. Baumana. [in Russian language]
3. Kurilenko G. A. (2000). Monitoring and forecasting individual fatigue resistance of mechanical engineering parts based on the kinetics of passive thermal fields. Novosibirsk: Novosibirskiy gosudarstvenniy tekhnicheskiy universitet. [in Russian language]
4. Ivanov, A. M., Lukin Е. S., Larionov V. N. (2004). To the study of the kinetics of elastoplastic deformation and destruction of structural elements with stress concentrators by thermal radiation. Doklady Akademii nauk, Vol. 395, (5), pp. 609-613. [in Russian language]
5. Plekhov O. A. (2009). Structural-kinetic mechanisms of deformation and destruction of materials in coarsegrained and submicrocrystalline states. Perm': Institut mekhaniki sploshnyh sred UO RAN. [in Russian language]
6. Nobuaki Nagatomo, Hidetoshi Sakamoto, Yoshifumi Ohbuchi. (2013). Macroscopic evaluation of plastic deformation by thermography method. 9th International Conference on Fracture & Strength of Solids. Jeju. Available at: http://https://www.ndt.net/ article/ qirt2010/papers/qirt2010-044.pdf. (Accessed: 25.08.2018).
7. Bazalєєv M. І. (2015). Development of physical and technological fundamentals of thermo-graphic testing and monitoring of the state of materials for the estimation of resource of equipment and constructions of nuclear energy by methods of infrared radiometry. Har'kov: Institut elektrofіziki і radіatsionnyh tekhnologіy NANU.
8. Abramova Е. V., Bystrova N. A., Belkin V. K. et al. (2014). Application of thermal control in the examination of industrial safety of a melting furnace. Reports of the XX All-Russian Conference on Non-Destructive Testing and Technical Diagnostics, pp. 206-209. Moscow: Spektr. [in Russian language]
9. Budadin O. N., Potapov A. I., Kolganov V. I., Troitskiy-Markov T. Е. (2002). Thermal non-destructive testing of the products. Moscow: Nauka. [in Russian language]
10. Shapovalov Е. V., Galagan R. M., Klishar F. S. et al. (2013). Modern methods and means of non-destructive testing of welded joints, made by resistance spot welding (review). Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', (1), pp. 10-22. [in Russian language]
11. Galietti U., Palumbo D. (2010). Application of thermal methods for characterization of steel welded joints. 10th International Conference on Quantitative InfraRed Thermography. Québec. Available at: http://https://www.ndt. net/ article/qirt2010/ papers/qirt2010–044.pdf . (Accessed: 25.08.2018).
12. Al–Karawi J., Schmidt J. Application of Infrared Thermography to the Analysis of Welding processes. Available at: qirt.org/archives/qirt2004/papers/077.pdf. (Accessed: 7.08.2018).
13. Horvath L. (2002). Experimentelle Untersuchungen der im Stahlbau typischen Bauteile mit Thermovision. Dissertation zu Erlangung des akademischen Grades eines Doktor–Ingenieurs. Cottbus: BTU.
14. Paton B. Е., Lobanov L. M., Nedoseka S. A. et al. (2016). Intellectual technologies in the assessment of the state of structures (AE-technology and inspection equipment of the new generation based on it). Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', (2), pp. 3-18. [in Russian language]
15. Dubov A. A. (2003). Problems of evaluation of residual resource aging equipment. Bezopasnost' truda v promyshlennosti, (3), pp. 46-49. [in Russian language]
16. Еremin K. I., Matveyushkin S. A. (2008). Features of the expertise and NC of metal structures of operated structures. V mire NK, 42 (4), pp. 4-7. [in Russian language]
17. Komarovskiy A. A. (2000). Diagnostics of the stress-strain state. Kontrol'. Diagnostika, (2), pp. 22-27. [in Russian language]
18. Thomson W. (1857). On the Thermoelastic and Thermomagnetic Properties of Matter. Quarterly Journal of Mathematics, (1), pp. 57-77.
19. Gubkin S. I. (1961). Plastic deformation of metals: in 2 volumes. Vol. 2: Physicochemical theory of plasticity. Moscow: Metallurgizdat. [in Russian language]
20. Moyseychik Е. A. (2010). Carbon distribution and heat generation mechanism during cold deformation of low carbon steel samples. Vestnik Belorusskogo natsional'nogo tekhnicheskogo universiteta, (5), pp. 22-26. [in Russian language]
21. Moyseychik Е. A. (2013). The study of heat generation and the generation of damage in a steel tensile plate with a design-technological defect. Prikladnaya mekhanika i tekhnicheskaya fizika, (1), pp. 134-142. [in Russian language]
22. Nicholas J. F. (1959). The dissipation of energy during plastic deformation. Acta metallurgica, Vol. 7, pp. 544-546.
23. Moyseychik E. A., Vavilov V. P., Kuimova M. V. (2018). Nondestructive testing of steel and constructions using the phenomenon of deformation heat release. Journal of Nondestructive Evaluation, Vol. 37, 28(2). DOI: 10.1007/s10921-018-0482-4.
24. Abramova K. B., Shcherbakov I. P., Rusakov A. I., Semenov A. A. (1999). Emission processes accompanying the deformation and destruction of metals. Fizika tverdogo tela, Vol. 41, (5), pp. 842-843. [in Russian language]
25. Malygin G. A. (1977). Local heating in crystals at low temperature deformation. Fizika tverdogo tela, Vol. 19, (10), pp. 3152-3155. [in Russian language]
26. Moyseychik Е. A. (2010). The nature of heat generation during cold deformation of steel reinforcement. Mekhanika mashin, mekhanizmov i materialov, 2(3), pp. 69- 74. [in Russian language]
27. Moyseychik Е. A. (2011). Limit states of tensioned bolts and their inclusion in joints. Izvestiya vuzov. Stroitel'stvo, (8 – 9), pp. 84-91. [in Russian language]
28. Moyseychik, Е. A., Shafray S. D. (2014). Modeling of work and thermography of stretched welded joints of steel structures with paired plates. Vestnik grazhdanskih inzhenerov, 47(6), pp. 58-63. [in Russian language]
29. Moyseychik Е. A. (2015). Fundamentals of non-destructive testing of stretched elements of steel structures using deformation heat. Nerazrushayushchiy kontrol' i diagnostika, (4), pp. 57-68. [in Russian language]
30. Moyseychik Е. A. (2015). Limit condition of studs for fastening the turbine cover of a hydraulic unit and development of a system for monitoring their performance. Gidrotekhnicheskoe stroitel'stvo, (3), pp. 43-47. [in Russian language]
31. Moyseychik Е. A., Moyseychik A. Е. (2014). Fundamentals of thermal testing of load-bearing structures using deformation heat generation. Nerazrushayushchiy kontrol' i diagnostika, (3), pp. 3-19. [in Russian language]
32. Moyseychik Е. A. (2015). Fundamentals of non-destructive testing of stretched elements of steel structures using deformation heat. Nerazrushayushchiy kontrol' i diagnostika, (4), pp. 57-68. [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.06.pp.050-057

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования