1. Dushin M. I., Hrul'kov A. V., Muhametov R. R. (2011). The choice of technological parameters of autoclave molding of parts from polymer composite materials. Aviatsionnye materialy i tekhnologii, (3), pp. 20 – 26. [in Russian language]
2. Veshkin E. A., Postnov V. I., Abramov P. A. (2012). Ways to improve the quality of PCM parts in vacuum molding. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, Vol. 14, 3(4), pp. 834 – 839. [in Russian language]
3. Hrul'kov A. V., Grigor'ev M. M., Yazvenko L. N. (2016). Prospects for the introduction of autoclave-free technologies for the manufacture of structural materials (review). Trudy VIAM, 38(2), pp. 45 – 52. [in Russian language]
4. Donetskiy K. I., Dushin M. I., Mishchun M. I., Sevast'yanov D. V. (2017). Some features of the application of semiregs for vacuum molding of PCM (review). Trudy VIAM. Kompozitsionnye materialy, 60(12), pp. 81 – 93. [in Russian language]
5. Stepanova L. N., Bataev V. A., Chernova V. V. (2019). Determination of the relationship between the structure of carbon fiber samples and the parameters of acoustic emission signals with simultaneous static and thermal loading. Kontrol'. Diagnostika, (11), pp. 4 – 13. [in Russian language] DOI: 10.14489/td.2019.11.pp.004-013
6. Madaras E. (2001). Highlights of NASA´s role in developing state-of-the-art nondestructive evaluation for composites: NASA Document ID 20050050900. Presented at the American Helicopter Society Hampton Roads Chapter Structure Specialist Meeting. Williamsburg.
7. Prosser W., Madaras E., Studor G., Gorman M. (2005). Acoustic emission detection of impact damage on space shuttle structures. Journal of Acoustic Emission, Vol. 23, pp. 37 – 46.
8. Gorman M. (2011). Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure vessel. Journal of Acoustic Emission, Vol. 29, pp. 1 – 28.
9. Sudha J., Sampathkumare S., Kumar R. (2011). Condition monitoring of delamination during drilling of GFRP composites using acoustic emission technique – a neural model. Insight, Vol. 53, (8), pp. 445 – 449.
10. Madaras E., Horne M. (2014). Investigation of the magneto-acoustic villari effect for measuring the internal stress in composites. Seedling Technical seminar. NASA.
11. Fengming Yu., Yoji Okabe, Qi Wu, Naoki Shigeta. (2016). Damage type identification based on acoustic emission detection using a fiber-optic sensor in carbon fiber reinforced plastic laminates. 32nd European Conference on Acoustic Emission Testing, pp. 543 – 550. Prague.
12. Stepanova L. N., Chernova V. V., Kabanov S. I. (2018). Analysis of the mode composition of acoustic emission signals with simultaneous thermal and static loading of T800 carbon fiber samples. Kontrol'. Diagnostika, (11), pp. 4 – 13. [in Russian language] DOI: 10.14489/td.2018.11.pp.004-013
13. Stepanova L. N., Petrova E. S., Chernova V. V. (2018). Strength tests of a CFRP spar using methods of acoustic emission and tensometry. Russian Journal of Nondestructive testing, Vol. 54, (4), pp. 243 – 248.
14. Stepanova L. N., Chernova V. V., Petrova E. S., Ramazanov I. S. (2018). Acoustic-emission testing of failure in samples of CFRP exposed to static and heat loads. Russian Journal of Nondestructive testing, Vol. 54, (11), pp. 748 – 756.
15. Stepanova L. N., Kabanov S. I., Chernova V. V. (2019). Acoustic emission method for determining structural defects of a carbon fiber sample. Ru Patent No. 2704144. [in Russian language]
16. Stepanova L. N., Kabanov S. I., Ramazanov I. S., Chernova V. V. (2018). The method of acoustic emission control of defects in composite structures based on carbon fiber. Ru Patent No. 2674573. [in Russian language]
17. Stepanova L. N., Bataev V. A., Laperdina N. A., Chernova V. V. (2018). Acoustic emission method for determining the type of structural defect of a carbon fiber sample. Ru Patent No. 2676209. [in Russian language]
18. Bataev V. A., Stepanova L. N., Laperdina N. A., Chernova V. V. (2018). Acoustic emission control of the early stage of the development of defects under static loading of carbon fiber samples. Kontrol'. Diagnostika, (8), pp. 14 – 20. [in Russian language] DOI: 10.14489/td.2018.08.pp.014-020