Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 01 | 2025
2020, 07 July

DOI: 10.14489/td.2020.07.pp.018-027

Akimov D. A., Kleymenov A. D., Kozelskaya S. O., Budadin O. N.
A NEW APPROACH TO ASSESSING THE OPERATIONAL SAFETY OF COMPOSITE MATERIALS AND PARTS OF COMPLEX STRUCTURES BASED ON ARTIFICIAL INTELLIGENCE METHODS AS A PART OF NEURAL NETWORKS AND DEEP RESULTS OF MULTI-CRITERIA COMPLEX NON-DESTRUCTIVE TESTING
(pp. 18-27)

Abstract. The article proposes a new approach to assessing the operational safety of materials and parts of complex structures based on artificial intelligence methods based on artificial neural networks and multi-criteria complex non-destructive testing, and special mathematical and algorithmic support for systems for evaluating operational safety and predicting residual life under external influences. A method of morphological analysis of the procedures for using measurement tools for heterogeneous information with different a priori information, both about the type of characteristics and the distribution of errors in the input and output signals, has been developed. The classification of problems of measuring parameters for the integration of heterogeneous information is proposed. A macromodel of error is obtained that can be used for research purposes to minimize errors in the developed equipment or for the purpose of correcting errors during operation. A classification of methods for measuring heterogeneous information from the standpoint of probability distribution theory is proposed. Experimental testing of developed algorithms tailored aggregation of information non-destructive testing and adaptation to poorly formalized parameters, which confirmed the effectiveness of the developed methods and algorithms for assessment of structures and resource forecasting their operational reliability was carried out.

Keywords: structural safety, deep forecasting, artificial intelligence, forecasting the resource of structures, deep neural network, recurrent autoencoder, flaw detection, incomplete information.

D. А. Akimov, A. D. Kleymenov (Federal State Budgetary Educational Institution of Higher Education “MIREA – Russian Technological University”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozelskaya, O. N. Budadin (JSC “Central Research Institute for Special Machinery”, Khotkovo, Moscow region, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Barynin V. A., Budadin O. N., Kul'kov A. A. (2013). Modern technologies of non-destructive testing of structures made of polymer composite materials. Moscow: ID «Spektr». [in Russian language]
2. Klyuev V. V., Budadin O. N., Abramova E. V. et al. (2017). Thermal control of composite structures under conditions of power and shock loading. Moscow: ID «Spektr». [in Russian language] ISBN 978-5-4442-0138-1.
3. Nosov V. V. (2014). Automated resource estimation of structural materials samples based on a micromechanical model of time dependences of acoustic emission parameters. Defektoskopiya, (12), pp. 24 – 35. [in Russian language]
4. Nosov V. V. (2016). Principles of optimization of technologies of acoustic emission monitoring of the strength of industrial facilities. Defektoskopiya, (7), pp. 52 – 67. [in Russian language]
5. Ohtilev M. Yu., Sokolov B. V., Yusupov R. M. (2006). Intelligent technologies for monitoring and controlling the structural dynamics of complex technical objects. Moscow: Nauka. [in Russian language]
6. Akimov D. A., Kotel'nikov V. V., Skoseleva D. A., Dyatchenkova A. Yu. (2017). Soft Residual Resource Forecasting. Sovremennaya nauka: aktual'nye problemy teorii i praktiki, (1), pp. 22 – 31. [in Russian language]
7. Blinova V. M. (2009). Failure management algorithm in distributed systems based on the principles of hierarchical cluster analysis. International Scientific Conference Parallel Computing Technologies PaVT'2009, pp. 86 – 89. Moscow. [in Russian language]
8. Morozova T. Yu., Bekarevich A. A., Budadin O. N. (2014). A new approach to the identification of defects in product materials. Kontrol'. Diagnostika, 194(8), pp. 42 – 48. [in Russian language] DOI: 10.14489/td.2014.08.pp.042-048
9. Fadeeva G. D., Parshina K. S., Rodina E. V. (2013). Design Improvement Methods. Molodoy ucheniy, (6), pp. 158 – 160. Available at: https://moluch.ru/archive/53/7137/ (Accessed: 03.10.2019). [in Russian language]
10. Blinova A. S., Trofimov A. V. (2018). Sravnitel'niy analiz metodov rascheta dliny ankerovki armatury. Molodoy ucheniy, 37, pp. 17 – 22. Available at: https://moluch.ru/archive/223/52638/ (Accessed: 03.10.2019). [in Russian language]
11. Matveev A. D. (2012). Determination of safety factor, probability of failure and service life for a set of elastic parts consisting of various materials. Izvestiya AltGU, 73(1). Available at: https://cyberleninka.ru/article/n/opredelenie-koeffitsienta-zapasa-prochnosti-veroyatnosti-razrusheniya-i-sroka-sluzhby-dlya-sovokupnosti-uprugih-detaley-sostoyaschih (Accessed: 03.10.2019). [in Russian language]
12. Kotel'nikov V. V., Akimov D. A. (2016). Prediction of the ultimate resource and reliability of the functioning of elements and structures based on a chronological analysis of the results of non-destructive testing. X International Conference, pp. 22 – 28. Moscow. [in Russian language]
13. Kotel'nikov V. V., Akimov D. A. (2016). A method for assessing the ultimate resource of structures based on the adaptive response model to critical impacts. X International Conference, pp. 28 – 35. [in Russian language]
14. Akimov D. A., Dyatchenkova A. Yu., Sachkov V. E. (2018). Self-diagnosis of technical units of an autobot in conditions of incomplete information based on abduction. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i tekhnicheskie nauki, (2), pp. 18 – 24. [in Russian language]
15. Kotel'nikov V. V., Akimov D. A. (2017). Training convolutional neural networks for predicting and assessing the level of criticality of structural defects. International scientific-practical conference "Innovations in the field of technical sciences", pp. 54 – 62. [in Russian language]
16. Nazirov R. R. (Ed.), Drynkin V. N., Fal'kov E. Ya., Tsareva T. I. (2012). The formation of a combined image in a two-zone airborne aerospace system. Proceedings of the scientific and technical conference "Technical Vision in Control Systems - 2012", pp. 33 – 39. Moscow: Mekhanika, upravlenie i informatika. Available at: http://www.iki.rssi.ru/books/2012_2tz.pdf (Accessed: 13.02.2016). [in Russian language]
17. Solov'ev R. A., Tel'puhov D. V., Kustov A. G. (2017). Automatic segmentation of satellite images based on the modified UNET convolutional neural network. IVD, 47(4). Available at: https://cyberleninka.ru/article/n/avtomaticheskaya-segmentatsiya-sputnikovyh-snimkov-na-baze-modifitsirovannoy-svyortochnoy-neyronnoy-seti-unet Accessed: 03.10.2019). [in Russian language]
18. Efimov A. G., Shubochkin A. E. (2015). The use of eddy current flaw detection and magnetic structuretroscopy in the integrated control of trunk pipelines. Ekspozitsiya Neft' Gaz, 42(3), Available eat: https://cyberleninka.ru/article/n/primenenie-vihretokovoy-defektoskopii-i-magnitnoy-strukturoskopii-pri-kompleksnom-kontrole-magistralnyh-truboprovodov (Accessed: 03.10.2019). [in Russian language]
19. Abdelbar A. M., El-Hemaly M. A., Andrews E. A.-T., Wunsch D. C. (2005). Recurrent neural networks with backtrack-points and negative reinforcement applied to costbased abduction. Neural Networks, Vol. 18, (5–6), pp. 755 – 764.
20. Esposito F., Semeraro G., Fanizzi N., Ferilli S. (2000). Multistrategy Theory Revision: Induction and Abduction in INTHELEX. Machine Learning, Vol. 38, (1/2), pp. 133 – 156.

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.07.pp.018-027

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования