Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 01 | 2025
2020, 08 August

DOI: 10.14489/td.2020.08.pp.044-053

Makhov V. E., Emelyanov A. V., Potapov A. I., Petrushenko V. M.
ACCURACY OF MEASURING SYSTEMS BASED ON LASER MODULES
(pp. 44-53)

Abstract. Measuring systems using the design of laser module beams on the surface of the object under study are considered. A technique is proposed for experimental studies of the brightness structure of the study of laser modules for their subsequent testing. Adaptive algorithms for determining the type of module and distance have been developed for determining the coordinates of light marks on the surface of controlled products, ensuring the accuracy and reliability of the measurement. The need for high-precision measuring systems to carry out their preliminary selection and calibration of laser modules according to the proposed method, taking into account the range of design of light marks, is shown. It is shown in the work that the accuracy of determining the relative coordinates in the trajectory of the light marks of laser modules at a distance of 5 m for plain surfaces of the observed objects can be several times higher (0,2…0,3 mm) of the accuracy of determining their absolute coordinates (»1 mm).

Keywords: laser module, optoelectronic system – OES, light field recorder, digital camera, DC, CCD, CMOS.

V. E. Makhov, A. V. Emelyanov (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. I. Potapov (Saint-Petersburg Mining University, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. M. Petrushenko (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

1. Luhmann T., Robson S., Kyle S., Boehm J. (2014). Close-Range Photogrammetry and 3D Imaging: de Gruyter. Berlin.
2. Mahov V. E. (2014). Non-destructive optical inspection of diamonds based on computer technology National Instruments. Zapiski Gornogo instituta, pp. 119 – 123. [in Russian language]
3. Mahov V. E. (2011). Алгоритмы определения координат световых меток в оптическом приборе. Voprosy radioelektroniki. Seriya Tekhnika televideniya, (1), pp. 113 – 121. [in Russian language]
4. Mahov V. E., Potapov A. I. (2013). Analysis of the effectiveness of the optical method for controlling capillaries. The theoretical basis of the optical control of capillaries. Spravochnik. Inzhenerniy zhurnal s prilozheniem, 196(7), pp. 48 – 56. [in Russian language]
5. Potapov A. I., Makhov V. E. (2018). Methods for nondestructive nesting and diagnostics of durability of articles made of polymer composite materials. Russian Journal of Nondestructive Testing, Vol. 54, (3), pp. 151 – 163.
6. Mahov V. E., Repin O. S., Potapov A. I. (2014). Measurement of linear dimensions by vision systems in coherent light. Kontrol'. Diagnostika, (4), pp. 12 – 19. [in Russian language] DOI: 10.14489/td.2014.04.pp.012-019
7. Abramov A. I., Bel'skiy A. B., Zborovskiy A. A., Ivanov B. B. (2009). Development of laser range finders at the Krasnogorsk plant named after S. A. Zvereva. Opticheskiy zhurnal, (8), pp. 18 – 21. [in Russian language]
8. Napartovich A. P. (1994). Laser Reference. Moscow: Energoatomizdat. [in Russian language]
9. Franson M. (1980). Speckle Optics. Moscow: Mir. [in Russian language]
10. Holst G. C., Lomheim T. S. (2011). CMOS/CCD Sensors and Camera Systems. 2nd ed. SPIE Press Book.
11. Gruzman I. S., Kirichuk V. S., Kosyh V. P. et al. (2000). Digital Image Processing in Information Systems: A Schoolbook. Novosibirsk: Izdatel'stvo NGTU. [in Russian language]
12. Kučera Jan. (2014). Computational photography of light-field camera and application to panoramic photography: Study programme: Computer Science, Software Systems Specialization: Computer Graphics / Department of Software and Computer Science; Education Supervisor of the master thesis. Prague.
13. Trevis Dzh., Kring Dzh. (2011). LabVIEW for everyone. 4th ed. Moscow: DMK Press. [in Russian language]
14. Vizil'ter YU. V., Zheltov S. Yu., Knyaz' V. A. et al. (2007). Digital Image Processing and Analysis with Examples at LabVIEW IMAQ Vision. Moscow: DMK Press. [in Russian language]
15. Klinger T. (2003). Image processing with Labview and Imaq Vision (National Instruments Virtual Instrumentation Series). Prentice Hall Professional.
16. Chui Ch. (2001). Introduction to Wavelets. Moscow: Mir. [in Russian language]
17. Mahov V., Liferenko V., Zakutaev A. (2016). Methods of time-frequency analysis of signals and their computer implementation in LabView. Komponenty i tekhnologii, 180(7), pp. 137 – 142. [in Russian language]
18. Liferenko V., Zakutaev A., Mahov V. (2015). Computer implementation of wavelet analysis methods in the NI LabView virtual instrument development environment. Komponenty i tekhnologii, 170(9), pp. 132 – 139. [in Russian language]
19. Mahov V. E., Potapov A. I. (2013). The study of a measuring optical system in conditions of mechanical instability of the control object. Kontrol'. Diagnostika, (2), pp. 12 – 23. [in Russian language]
20. Makhov V. E., Shaldaev S. E. (2019). Methods of spatial and temporal processing of images in optoelectronic control systems. IOP Conference Series: Earth and Environmental Science. IOP Publishing, Vol. 378.
21. Potapov A. I., Makhov V. E., Smorodinskii Y. G., Manevich E. Y. (2019). Smart-Camera – Based Linear Sizing. Russian Journal of Nondestructive Testing, Vol. 55, (7), pp. 524 – 532.
22. Ng R. (2006). Digital light field photography: A dissertation submitted to the department of computer science and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy.
23. Mahov V. E., Potapov A. I., Shaldaev S. E. (2017). Control of geometric parameters of products by the light field method. Kontrol'. Diagnostika, (7), pp. 12 – 24. [in Russian language] DOI: 10.14489/td.2017.07.pp.012-024
24. FTI-Optronic: company website. Available at: www.fti-optronic.com/Lazernye-moduli.html. [in Russian language]
25. Litvenenko O. N. (1974). The basics of radio optics. Kiev: Tekhnika. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.08.pp.044-053

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования