DOI: 10.14489/td.2020.09.pp.026-033
Smotrova S. А., Ivanov V. I., Smotrov А. V., Kuskova A. N., Mantrova Yu. V. OPERATING RANGE RESPONSIVENESS DEFINITION OF LUMINESCENT SMART COATING BY RESULTS OF IMPACT DAMAGES PARAMETERS ULTRASONIC MEASUREMENTS (pp. 26-33)
Abstract. One of the characteristic aircraft damages is impact by foreign object. In subsequent operation, the presence of impact damages to airframes made of polymer composite materials (PCM) leads to a violation of their structures and integrities. To avoid accidents it is necessary to identify and measure the parameters of such damages. The paper analyzes literature data, impact tests results and ultrasonic control of PCM samples. PCM samples represent plates. Dependences of PCM samples defect size on impact energy are revealed. It is shown that at energy of effect in a range 10…45 J damages with the linear sizes 25…70 mm are formed. The difference of the damages sizes on facing and turnaround surfaces of PCM samples is noted. The largest number of procedures in aviation is visual inspection with the naked eye or using any additional equipment. Its main disadvantage in relation to composite products is the fundamental inability to detect barely visible impact damage and internal defects that do not extend to the surface. The technology of impact damage detection using special impact -sensitive luminescent smart coatings with optical properties allows to improve the visual inspection procedure qualitatively. The result of the research is to define the permissible range of coating sensitivity. The luminescent smart coating operating range is determined: 10…20 J. Luminescent smart coating is developed for detection of barely visible impact damage on composite airframes.
Keywords: polymer composite materials (PCM), luminescent smart coating (LSC), impact tests, barely visible impact damage (BVID), ultrasonic testing, damages parameters measurements, connection of impact energy with the defect size, LSC operating range.
S. А. Smotrova (FSUE “TsAGI”, Zhukovsky, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. I. Ivanov (JSC “NIIIN MNPO Spectr” Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. V. Smotrov, A. N. Kuskova, Yu. V. Mantrova (FSUE “TsAGI”, Zhukovsky, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Murashov V. V., Rumyantsev A. F. (2007). Defects of monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 1 – 2. Kontrol'. Diagnostika, Part 1, (4), pp. 23 – 31; Part 2, (5), pp. 31 – 36. [in Russian language] 2. Polilov A. N. (2015). Studies on the mechanics of composites. Moscow: Fizmatlit. [in Russian language] 3. Ivanov V. I., Belov P. A., Nasibullin T. S. (2016). Types of acoustic emission sources in composite materials. Kontrol'. Diagnostika, (10), pp. 14 – 20. [in Russian language] DOI: 10.14489/td.2016.10.pp.014-020 4. Smotrova S. A., Smotrov A. V. (2016). Features of damageability of aircraft structures made of PCM. Results of fundamental research in applied problems of aircraft engineering: collection of articles, pp. 418 – 429. Moscow: Nauka. [in Russian language] 5. Composite Aircraft Structure. (2010). Advisory Circular No. 20-107B. Federal Aviation Administration. 6. Kapadia Ajay. (2007). Non Destructive Testing of Composite Materials. Best Practice Guide. Cambridge: TVI Ltd. 7. Vaara P., Leinonen J. (2012). Technology Survey on NDT of Carbonfiber Composites, Series B, (8). Kemi: Kemi-Tornio University of Applied Sciences. 8. Campbell F. C. (2010). Structural Composite Materials, Chapter 12, pp. 333 – 350. Ohio: ASM International Materials Park Ohio. 9. Stoermer M. (1989). NDI-concept for composites in future military aircraft. 69th Meeting of the Structures and Materials. AGARD Conference Proceedings No. 462 (Impact of Emerging NDE-NDI Methods on Aircraft Design, Manufacture and Maintenance), pp. 3-1 – 3-8. Essex: AGARD. Brussels. 10. Karimbaev T. D., Pal'chikov D. S. (2014). Methods for non-destructive testing of aircraft engine parts made of composite materials. Determination of defect limits. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 47(5), Part 1, pp. 96 – 105. [in Russian language] 11. Shipsha V. G., Prohorovich V. E. (2015). Non-destructive testing of composite materials. Review of the state and development prospects. Non-destructive testing of composite materials: Collection of proceedings of the 1st remote scientific and technical conference NKKM-2014 "Devices and methods of non-destructive testing of the quality of products and structures made of composite and heterogeneous materials", pp. 36 – 44. Saint Petersburg: Sven. [in Russian language] 12. Shulaykin A. Yu., Popov M. A., Kovalev V. A. et al. (2016). Modern methods of diagnostics of objects made of composite materials. Sovremennaya tekhnika i tekhnologii, (4), pp. 1 – 6. Available at: http://technology.snauka.ru/2016/04/9920 (Accessed: 08.02.2019). [in Russian language] 13. Harris B. (Ed.), Mouritz A. P. (2003). Non-destructive evaluation of damage accumulation. Fatigue in composites. Science and technology of the fatigue response of fibre-reinforced plastics, Chapter 8, pp. 242 – 266. Abington – Cambridge: Woodhead Publishing Limited. 14. Standard Practice for Determining Damage-Based Design Stress for Glass Fiber Reinforced Plastic (GFRP) Materials Using Acoustic Emission. (2011). International Standard No. ASTM E2478–2011. 15. Standard Guide for Acousto-Ultrasonic Assessment of Composites, Laminates, and Bonded Joints. (2012). International Standard No. ASTM E1495/E1495M–2012. 16. Chernyshev S. L., Zichenkov M. Ch., Smotrova S. A. et al. (2018). Luminescent polymer coating for structural damage detection. Invention Patent No. 2644917. Russian Federation. [in Russian language] 17. Chernyshev S. L., Zichenkov M. Ch., Smotrova S. A. et al. (2018). Method for detecting impact damage to a structure. Invention Patent No. 2645431. Russian Federation. [in Russian language] 18. Landau L. D., Lifshits E. M. (1987). Theoretical physics: in 10 volumes. Vol. VII. Theory of elasticity: a textbook, pp. 44 – 51. Moscow: Nauka. [in Russian language] 19. Polymer composites. Acoustic-ultrasonic testing of multilayer composites and adhesive joints. (2017). Ru Standard No. GOST R 57861–2017. Moscow: Standartinform. [in Russian language] 20. Burkov M. V., Lyubutin P. S., Byakov A. V. (2019). Appli-cation of ultrasonic technique using Lamb waves to detect subtle impact damage in CFRPs. Defektoskopiya, (2), pp. 3 – 15. [in Russian language] 21. Trostyanskaya E. B. (Ed.), Babaevskiy P. G., Vinogradov V. M., Golovkin G. S. et al. (1974). Structural plastics (thermosets). Moscow: Himiya. [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2020.09.pp.026-033
and fill out the form
|