Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
18 | 11 | 2024
2020, 11 November

DOI: 10.14489/td.2020.11.pp.004-013

Makhov V. E., Shirobokov V. V., Emelyanov A. V., Potapov A. I.
RESEARCH OF OPTOELECTRONIC SYSTEMS ON THE BASIS OF A TELESCOPE WITH A LIGHT FIELD DIGITAL CAMERA
(pp. 4-13)

Abstract. Within the framework of solving the problems of developing intelligent optoelectronic systems for monitoring remote objects, the possibilities of constructing schemes for registering remote objects with a telescopic system based on a light field digital camera are considered. A technique for calculating a two-component optical scheme for registering distant objects by an optoelectronic system based on a digital camera of a light field is presented, and a layout of an experimental setup for registering a scale model of an object with a two-component optical system consisting of a main mirror of a Newtonian telescope and a digital camera of a light field is presented. The principles of constructing algorithms for determining the main parameters of controlled objects and high-precision calibration of the optical system of the recorder have been developed. The fundamental possibility of constructing a light field correlator on the basis of a telescope is shown. An example of processing a light field file is given. The possibility of high-precision determination of the parameters of remote objects has been investigated.

Keywords: light field digital camera, distant objects, light field correlator, the method of calculating of a light field astrograph, light field file processing.

V. E. Makhov, V. V. Shirobokov, A. V. Emelyanov (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. I. Potapov (Saint-Petersburg Mining University, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Kuleshov S. V., Aksenov A. Yu., Zaytseva A. A. (2016). About the approach to building a software-defined camera (review). Nauchnoe priborostroenie, Vol. 26, (3), pp. 44 – 49. [in Russian language]
2. Terebizh V. Yu. (2007). Modern optical telescopes. Moscow: Fizmatlit. [in Russian language]
3. Ermolaeva E. V., Zverev A. A., Filatov A. A. (2012). Adaptive optics. Saint Petersburg: NIU ITMO. [in Russian language]
4. Mahov V. E., Shaldaev S. E., Potapov A. I., Smorodinskiy Ya. G. (2020). Influence of image quality in optoelectronic systems on the accuracy of determining the studied parameters of objects. Defektoskopiya, (7), pp. 28 – 43. [in Russian language]
5. Makhov V. E., Shaldaev S. E. (2019). Methods of spatial and temporal processing of images in optoelectronic control systems. IOP Conference Series: Earth and Environmental Science, Vol. 378.
6. Maksarov V. V., Makhov V. E. (2019). Intelligent systems for monitoring and controlling chip formation whit cutting difficult-to-machine materials. IOP Conference Series: Materials Science and Engineering.
7. Makhov V. E., Sytko I. I. (2018). Shape and Relief Evaluation Using the Light Field Camera. In the collection: IOP Conference Series: Earth and Environmental Science, Vol. 194.
8. Shanin Yu. I. (2019). Application of adaptive filtering to improve the performance of adaptive optical systems. Analytical overview. Mashinostroenie i komp'yuternye tekhnologii, (2), pp. 34 – 60. [in Russian language]
9. Holst G. C., Lomheim T. S. (2011). CMOS/CCD Sensors and Camera Systems. 2nd ed. SPIE Press Books.
10. Potapov A. I., Mahov V. E., Smorodinskiy Ya. G., Manevich E. Ya. (2019). Control of linear dimensions based on a smart camera. Defektoskopiya, (7), pp. 37 – 45. [in Russian language]
11. Kučera J. (2014). Computational photography of light-field camera and application to panoramic photography. Department of Software and Computer Science. Study programme: Computer Science, Software Systems Specialization: Computer Graphics. Prague.
12. Neyaskina O. V., Chihachev E. A., Chichov A. K. (2019). Lensless electronic imaging device. Proceedings of the conference "Problems and prospects for the development of experimental science", pp. 69 – 82. Chelyabinsk. [in Russian language]
13. Bok Y., Jeon H.-G., Kweon I. S. (2017). Geometric Calibration of Micro-Lens-Based Light-Field Cameras using Line Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, (2), pp. 287 – 300.
14. Dansereau D. G., Williams S. B., Corke P. I. (2016). Simple change detection from mobile light field cameras. Computer Vision and Image Understanding, Vol. 145, pp. 160 – 171.
15. Brinkmann L. (2016). Time-of-flight cameras: 2D and 3D images in one frame. Sistemy bezopasnosti, (2). [in Russian language]
16. Travis J., Kring J. (2006). LabVIEW for Everyone: Graphical Programming Made Easy and Fun. 3d ed. Prentice Hall.
17. Klinger T. (2003). Image processing with Labview and Imaq Vision. Prentice Hall Professional. (National Instruments Virtual Instrumentation Series).
18. Ng R. (2006). Digital light field photography: A dissertation submitted to the department of computer science and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy.
19. 3D Light Field Camera Technology. (2013). Germany: Raytrix GmbH. Available at: http://www.isolutions.com.sg/Raytrix.pdf (Free access).
20. Mahov V., Petrushenko V., Zakutaev A. et al. (2018). Methods and tools for constructing optoelectronic systems for monitoring remote objects. Komponenty i tekhnologii, 198(1), pp. 14 – 20. [in Russian language]
21. Mahov V., Potapov A., Zakutaev A. (2018). Principles of operation of digital light field cameras with an array of microlenses. Komponenty i tekhnologii, 198(1), pp. 14 – 20. [in Russian language]
22. Mahov V., Petrushenko V., Zakutaev A. et al. (2020). Methods and tools for constructing optoelectronic systems for monitoring remote objects. Komponenty i tekhnologii, 226(5), pp. 94 – 99. [in Russian language]
23. Gruzman I. S. Kirichuk V. S., Kosyh V. P. et al. (2000). Digital image processing in information systems: a textbook. Novosibirsk: Izdatel'stvo NGTU. [in Russian language]
24. Vizil'ter Yu. V., Zheltov S. Yu., Knyaz' V. A. et al. (2007). Processing and analysis of digital images with examples on LabVIEW IMAQ Vision. Moscow: DMK Press. [in Russian language]
1. Mahov V. E, Emel'yanov A. V., Potapov A. I., Petrushenko V. M. (2020). Accuracy of measuring systems based on laser modules. Kontrol'. Diagnostika, Vol. 23, (8), pp. 94 – 53. [in Russian language] DOI: 10.14489/td.2020.08.pp.044-053

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.11.pp.004-013

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования