Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2020, 11 November

DOI: 10.14489/td.2020.11.pp.020-025

Erofeev V. I., Ilyahinsky A. V., Nikitina Е. А., Rodyushkin V. M., Khazov P. A.
RAYLEIGH SURFACE WAVES IN ASSESSING THE STATE OF METAL STRUCTURES
(pp. 20-25)

Abstract. The paper is dedicated to search for an ultrasonic sensing method to identify the state of a material that makes it possible to classify the structure to be diagnosed as the structure of which state is associated with occurrence of plastic strains. We examined the effect of C275 steel’s uniaxial strain-stress state on velocity of an elastic Rayleigh wave. Elastic waves were generated by piezoelectric transducers using oscillation frequencies of 2, 5, and 10 MHz. Transmitting and receiving transducers have been fitted in a single block and permanently spaced 50 mm apart. The transmitting transducer was excited using А1214 test instrument. The sensing pulse was taken up using Tektronix TDS2022 oscilloscope with maximum time resolution of 2 ns. Delay of the received signal relative to the initial position of the informative point (pulse’s zero crossing) has been chosen as a numerical indicator of elastic wave velocity variations caused by strain. Rise in delay value at permanent space between transmitting and receiving transducers is indicative of decrease in sensing pulse velocity and vice versa. For pure elastic strains the difference between delays (velocities) of the waves propagating parallel and perpendicular to stress acting in a material under load is proportional to the acting stress. For plastic strains the dependence of acoustic anisotropy (difference between delays) on the applied stress is non-linear and drops with rise in stress. Delay variations in the elastic range do not depend on the sensing pulse frequency. As to the plastic strain range we observe a significant dependence of velocity on frequency. Due to the results obtained we propose to use the dependence on Rayleigh wave velocity as a diagnostic symptom of a material under plastic strains.

Keywords: velocity, elastic wave, plastic deformation, diagnostic symptom.

V. I. Erofeev, A. V. Ilyahinsky, Е. А. Nikitina, V. M. Rodyushkin, P. A. Khazov (Mechanical Engineering Research Institute of the Russian Academy of Science, Nizhny Novgorod, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Klyuev V. V. (Ed.), Anisimov V. A., Katorgin B. I., Kutsenko A. N. et al. (2006). Non-destructive testing: reference book: in 8 volumes. Vol. 4: in 3 books. Book 1. Acoustic strain measurement. 2nd ed. Moscow: Mashinostroenie. [in Russian language]
2. Aleshin N. P. (2011). Possibilities of non-destructive testing methods for assessing the stress-strain state of loaded metal structures. Svarka i diagnostika, (6). [in Russian language]
3. Hughes D. S., Kelly J. L. (1953). Second-order elastic deformation of solids. Physical Review, Vol. 92, (5), pp. 1145 – 1149.
4. Benson R. W., Raelson V. J. (1959). From ultrasonics to a new stress-analysis technique. Acoustoelasticity. Product Engineering, Vol. 30, pp. 56 – 59.
5. Non-destructive testing. Determination of the stress state of the material of mechanical engineering products by the method of acoustoelasticity. General requirements. (2016). Ru Standard No. GOST R56664–2015. Moscow: Standartinform. [in Russian language]
6. Nikitina N. E. (2005). Acoustoelasticity. Practical application experience. Nizhniy Novgorod: TALAM. [in Russian language]
7. Uglov A. L., Erofeev V. I., Smirnov A. N. (2009). Acoustic control of equipment during manufacture and operation. Moscow: Nauka. [in Russian language]
8. Hazov P. A., Generalova A. A., Vorob'eva A. E. (2019). Resonance analysis of a frame building under seismic impacts of various frequency ranges. Privolzhskiy nauchniy zhurnal, (4), pp. 56 – 64. [in Russian language]
9. Erofeev V. I., Nikitina E. A., Hazov P. A. et al. (2019). Influence of storm load on material damage of load-bearing structures of frame building. Privolzhskiy nauchniy zhurnal, (1), pp. 9 – 15. [in Russian language]
10. Hazov P. A., Sankina N. V. (2019). Resonant analysis of structural schemes of a frame building, taking into account the flexibility of the base under wind and storm effects. Privolzhskiy nauchniy zhurnal, (3), pp. 18 – 27. [in Russian language]
11. Poznyak E. V., Monin S. A. (2018). Statistical modeling of a dynamic response of a stadium grandstand to human load. Russian Journal of Building Construction and Architecture, 40(4), pp. 98 – 108.
12. Nazarov Yu. P., Poznyak E. V. (2017). The theory of quasi-static calculation of the stands of sports facilities for the coordinated actions of spectators. Nauchniy zhurnal stroitel'stva i arhitektury, 45(1), pp. 100 – 112. [in Russian language]
13. Zuev L. B., Semuhin B. S., Bushmeleva K. I. (2000). Change in the speed of ultrasound during plastic deformation Al. Zhurnal tekhnicheskoy fiziki, Vol. 70, (1), pp. 52 – 56. [in Russian language]
14. Semuhin B. S., Zuev L. B., Bushmeleva K. I. (2000). Ultrasonic velocity in low carbon steel deformable at the lower yield strength. Prikladnaya mekhanika i tekhnicheskaya fizika, Vol. 41, (3), pp. 197 – 201. [in Russian language]
15. Belyaev A. K., Lobachev A. M., Modestov V. S. et al. (2016). Estimation of the magnitude of plastic deformations using acoustic anisotropy. Mekhanika tverdogo tela, (5), pp. 124 – 131. [in Russian language]
16. Bel'chenko V. K., Lobachev A. M., Modestov V. S. et al. (2017). Assessment of the stress-strain state by the method of acoustoelasticity under cyclic loading. Nauchno-tekhnicheskie vedomosti SPbGTU. Fiziko-matematicheskie nauki, 10(1), pp. 112 – 120. [in Russian language]
17. Belyaev A. K., Lobachev A. M., Modestov V. S. et al. (2016). Estimation of the magnitude of plastic deformation using acoustic anisotropy. Mekhanika tverdogo tela, (5), pp. 124 – 131. [in Russian language]
18. Viktorov I. A. (1981). Sound surface waves in solids. Moscow: Nauka. [in Russian language]
19. Panin V. E. (1998). Fundamentals of physical mesomechanics. Fizicheskaya mezomekhanika, Vol. 1, (1), pp. 5 – 22. [in Russian language]
20. Panin V. E., Egorushkin V. E. (2015). Fundamentals of physical mesomechanics of plastic deformation and fracture of solids as nonlinear hierarchically organized systems. Fizicheskaya mezomekhanika, Vol. 18, (5), pp. 100 – 113. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.11.pp.020-025

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования