Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2020, 12 December

DOI: 10.14489/td.2020.12.pp.004-023

Gorkunov E. S., Mushnikov A. N.
MAGNETIC METHODS OF EVALUATING ELASTIC STRESSES IN FERROMAGNETIC STEELS (REVIEW)
(pp. 4-23)

Abstract. The paper describes the magnetoelastic effects and the existing concepts of the formation of magnetic textures under the action of elastic stresses in ferromagnetic materials. The possibilities of using magnetic parameters to assess the acting stresses in structural steels are shown: the assessment of the value of uniaxial compressive stresses is practically not difficult, however, there is a problem of assessing tensile stresses in low-alloy steels due to the ambiguous dependence of the magnetic characteristics on elastic tensile deformation. Possible reasons for this ambiguity are discussed, and methods for solving this problem using the anisotropy of the coercive force and the parameters of the magnetic rigidity spectra are shown. The possibilities of evaluating the acting stresses in multilayer ferromagnetics based on the field dependences of the differential magnetic permeability are considered. Papers on the study of the influence of complexly stressed states on the magnetic characteristics of ferromagnetic materials are discussed.

Keywords: elastic deformations, magnetic methods of nondestructive testing, magnetostriction, magnetic texture, coercive force, magnetic permeability, spectra of magnetic rigidity, structural steels, multilayer materials, complex stress state.

E. S. Gorkunov, A. N. Mushnikov (Institute of Engineering Science, UB RAS, Ekaterinburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Gumanyuk M. N. (1972). Magnetoelastic sensors in automation. Kiev: Tekhnika. [in Russian language]
2. Ginzburg V. B. (1970). Magnetoelastic sensors. Moscow: Energiya. [in Russian language]
3. Belov K. P. (1987). Magnetostrictive phenomena and their technical applications. Moscow: Nauka. [in Russian language]
4. Garshelis I. (1974). A Study of the inverse Wiedemann effect on circular remanence. IEEE Transactions on Magnetics, Vol. Mag-10, (2), pp. 344 – 358.
5. Lahyaoui O., Lanfranchi V., Buiron N. et al. (2019). Effect of mechanical stress on magnetization and magnetostriction strain behavior of non-oriented Si-Fe steels at different directions and under pseudo-DC conditions. International Journal of Applied Electromagnetics and Mechanics, Vol. 60, (2), pp. 299 – 312.
6. Klyuev V. V. (Ed.), Muzhitskiy V. F., Gorkunov E. S., Shcherbinin V. E. (2006). Non-destructive testing: reference book: in 8 volumes. Vol. 6. Book 1. Magnetic control methods. 2nd ed., pp. 19 – 375. Moscow: Mashinostroenie. [in Russian language]
7. Bozort R. (1956). Ferromagnetism. Moscow: IIL. [in Russian language]
8. Golyamina I. P. (1979). Ultrasound. Moscow: Sovetskaya entsiklopediya. [in Russian language]
9. Vonsovskiy S. V. (1971). Magnetism. Moscow: Nauka. [in Russian language]
10. Belov K. P. (1957). Elastic, thermal and electrical phenomena in ferromagnets. Moscow: Gostekhizdat. [in Russian language]
11. Budenkov G. A., Gurevich S. Yu. (1981). The current state of non-contact methods and means of ultrasonic testing (review). Defektoskopiya, (5), pp. 5 – 33. [in Russian language]
12. Landau L. D., Lifshits E. M. (2005). Continuous media electrodynamics. Moscow: Fizmatlit. [in Russian language]
13. Kandaurova G. S., Onoprienko L. G. (1977). Basic questions of the theory of magnetic domain structure. Sverdlovsk: UrGU. [in Russian language]
14. Gorkunov E. S. (1979). Effect of heat treatment on the magnetostriction of structural steel 34XH2M. Defektoskopiya, (11), pp. 105 – 108. [in Russian language]
15. Gorkunov E. S., Subachev Yu. V., Povolotskaya A. M., Zadvorkin S. M. (2013). Influence of elastic uniaxial deformation of medium-carbon steel on its magnetostriction in the longitudinal and transverse directions. Defektoskopiya, (10), pp. 40 – 52. [in Russian language]
16. Jus A., Nowak P., Ginko O. (2017). Assessment of the magnetostrictive properties of the selected construction steel. Acta Physica Polonica A, Vol. 131, (4), pp. 1084 – 1086.
17. Vonsovskiy S. V. (1947). Influence of weak elastic stresses on the initial reversible susceptibility of ferromagnets. Zhurnal eksperimental'noy i teoreticheskoy fiziki, Vol. 17, (12), pp. 1094 – 1105. [in Russian language]
18. Nichipuruk A. P., Gorkunov E. S., Kuleev V. G., Charikova N. I. (1990). Influence of structural changes during tempering on reversible magnetization processes in structural steels. Defektoskopiya, (8), pp. 68 – 75. [in Russian language]
19. Nichipuruk A. P., Noskova N. I., Gorkunov E. S., Ponomareva E. G. (1992). Effect of a dislocation structure formed by plastic deformation on the magnetic and magnetoelastic properties of iron and low-carbon steel. Fizika metallov i metallovedenie, (12), pp. 81 – 87. [in Russian language]
20. Kuleev V. G., Tsar'kova T. P. (2007). Features of the dependence of the coercive force of steels on elastic tensile stresses after plastic deformations and heat treatment. Fizika metallov i metallovedenie, Vol. 104, (5), pp. 479 – 486. [in Russian language]
21. Gorkunov E. S., Subachev Yu. V., Povolotskaya A. M., Zadvorkin S. M. (2015). Influence of preliminary plastic deformation on the behavior of the magnetic characteristics of high-strength pipe steel of controlled rolling under elastic uniaxial tension (compression). Defektoskopiya, (9), pp. 49 – 60. [in Russian language]
22. Gorkunov E. S., Zadvorkin S. M., Mushnikov A. N. et al. (2014). Effect of mechanical stresses on the magnetic characteristics of pipe steel. Prikladnaya mekhanika i tekhnicheskaya fizika, Vol. 55, 325(3), pp. 181 – 191. [in Russian language]
23. Zaharov V. A., Borovkova M. A., Komarov V. A., Muzhitskiy V. F. (1992). The effect of external stresses on the coercive force of carbon steels. Defektoskopiya, (1), pp. 41 – 46. [in Russian language]
24. Muzhitskiy V. F., Popov B. E., Bezlyud'ko G. Ya. (2000). Magnetic monitoring of the stress-strain state and residual life of steel metal structures of underground structures and vessels operating under pressure. Kontrol'. Diagnostika, (9), pp. 48 – 50. [in Russian language]
25. Novikov V. F., Baharev M. S., Nassonov V. V., Yatsenko T. A. (2005). Measurement of stresses in steel with a coercimeter. Izvestiya vysshih uchebnyh zavedeniy. Neft' i gaz, (2), pp. 89 – 94. [in Russian language]
26. Elfimov A. V., Sal'nikov A. V., Birillo I. N., Kuz'bozhev A. S. (2016). Experimental verification of the determination of mechanical stresses by the magnetic method on a pipe stand made of high-strength steel. Problemy sbora, podgotovki i transporta nefti i nefteproduktov, 105(3), pp. 103 – 109. [in Russian language]
27. Berdnik M. M., Aleksandrov Yu. V., Aginey R. V. (2010). Study of the influence of a plane stress state on the change in the magnetic characteristics of pipe steels. Nauka v neftyanoy i gazovoy promyshlennosti, (3), pp. 2 – 6. [in Russian language]
28. Berdnik M. M., Aleksandrov Yu. V., Aginey R. V. (2011). Study of the influence of a plane stress state on the change in the magnetic characteristics of pipe steels. Kontrol'. Diagnostika, (1), pp. 22 – 26. [in Russian language]
29. Novikov V. F., Yatsenko T. A., Baharev M. S. (2002). Dependence of the coercive force on uniaxial stresses (part 2). Defektoskopiya, (4), pp. 10 – 17. [in Russian language]
30. Matyuk V. F., Melguy M. A., Osipov A. A. et al. (2003). On the possibility of controlling the mechanical properties of steel 50HGFA by a pulsed magnetic method. Defektoskopiya, (9), pp. 28 – 36. [in Russian language]
31. Matyuk V. F. (2013). Devices for magnetic strucroscopy of sheet steel in the production process flow. Nerazrushayushchiy kontrol' i diagnostika, (2), pp. 3 – 28. [in Russian language]
32. Mel'guy M. A. (2015). Multiparameter methods of magnetic structuroscopy and devices for their implementation (review). Part II. Pulsed magnetic multiparameter method and IMA-M device for its implementation. Defektoskopiya, (3), pp. 11 – 20. [in Russian language]
33. Deryagin A. V., Kandaurova G. S., Shur Ya. S. (1973). On the nature of magnetic rigidity in a plastically deformed manganese-gallium alloy. Fizika metallov i metallovedenie, Vol. 35, (2), pp. 286 – 293. [in Russian language]
34. Gorkunov E. S., Yakushenko E. I., Zadvorkin S. M. et al. (2010). Influence of elastic deformation by compression, tension, torsion on the distribution of critical magnetic fields in steel 15HN4D. Defektoskopiya, (2), pp. 3 – 13. [in Russian language]
35. Shcherbinin V. E., Gorkunov E. S. (1996). Magnetic quality control of metals. Ekaterinburg: UrO RAN. [in Russian language]
36. Kostin K. V., Tsar'kova T. P., Nichipuruk A. P., Smorodinskiy Ya. G. (2011). Changes in the hysteresis characteristics of pipe steels during their elastic and plastic deformation by tension. Defektoskopiya, (9), pp. 25 – 36. [in Russian language]
37. Ronggao Cui, Shuhui Li, Zhe Wang, Xinke Wang. (2018). A modified residual stress dependent Jile-Atherton hysteresis model. Journal of Magnetism and Magnetic Materials, Vol. 465, pp. 578 – 584.
38. Bulte D. P., Langman R. A. (2002). Origins of the magnetomechanical effect. Journal of Magnetism and Magnetic Materials, Vol. 251, pp. 229 – 243.
39. Gorkunov E. S., Miheev M. N., Dunaev F. N. (1975). Magnetic and electrical properties of steels 18HNVA, 34HN3M, U9A depending on the heat treatment mode. Defektoskopiya, (3), pp. 119 – 126. [in Russian language]
40. Miheev M. N., Gorkunov E. S. (1981). Possible reasons for the difference in magnetization reversal processes in weak and medium magnetic fields of heat-treated structural steels. Fizika metallov i metallovedenie, Vol. 51, (4), pp. 749 – 755. [in Russian language]
41. Matyuk V. F., Osipov A. A. (2011). Mathematical models of the magnetization curve and magnetic hysteresis loops. Part I. Analysis of models. Nerazrushayushchiy kontrol' i diagnostika, (2), pp. 3 – 35. [in Russian language]
42. Kostin V. N., Tsar'kova T. P., Nichipuruk A. P.et al. (2009). Irreversible changes in magnetization as indicators of the stress-strain state of ferromagnetic objects. Defektoskopiya, (11), pp. 54 – 67. [in Russian language]
43. Gorkunov E. S. (2017). Magnetic methods for assessing structural and phase changes in individual layers of multilayer products. Diagnostics, Resource and Mechanics of Materials and Structures, (2), pp. 6 – 27. [in Russian language]
44. Gorkunov E. S., Zadvorkin S. M., Emel'yanov I. G., Mitropol'skaya S. Yu. (2007). Regularities of changes in the magnetic characteristics of two-layer products made of carbon steels under tension. Fizika metallov i metallovedenie, Vol. 103, (6), pp. 657 – 666. [in Russian language]
45. Gorkunov E. S., Mitropol'skaya S. Yu., Groznaya E. M. et al. (2011). Effect of Elastoplastic Loading on the Magnetic Properties of Gas-Carburized Steel 20. Defektoskopiya, (4), pp. 3 – 16. [in Russian language]
46. Langman R. (1990). Magnetic properties of mild steel under conditions of biaxial stress. IEEE Transactions on magnetics, Vol. 26, (4), pp. 1246 – 1251.
47. Novikov V. F., Zaharov V. A., Ul'yanov A. I. et al. (2010). The effect of biaxial elastic deformation on the coercive force and local remanent magnetization of structural steels. Defektoskopiya, (7), pp. 59 – 68. [in Russian language]
48. Pearson J., Squire P. T., Maylin M. G., Gore J. G. (2000). Biaxial stress effects on the magnetic properties of pureIron. IEEE Transactions on magnetics, Vol. 36, (5), pp. 3251 – 3253.
49. Kai Y., Tsuchida Y., Todaka T., Enokizono M. (2010). Development of system for vector magnetic property measurement under stress. Journal of Electrical Engineering, Vol. 61, (7/s), pp. 77 – 80.
50. Kai Y., Tsuchida Y., Todaka T., Enokizono M. (2014). Influence of biaxial stress on vector magnetic properties and 2D-magnetostriction of a nonoriented electrical steel sheet under alternating magnetic flux conditions. IEEE Transactions on magnetic, Vol. 50, (4).
51. Aydin U., Rasilo P., Singh D. et al. (2016). Coupled magneto-mechanical analysis of iron sheets under biaxial stress. IEEE Transactions on magnetic, Vol. 52, (3).
52. Aydin U., Rasilo P., Martin F. et al. (2019). Effect of multi-axial stress on iron losses of electrical steel sheets. Journal of Magnetism and Magnetic Materials, Vol. 469, pp. 19 – 27.
53. Aydin U., Martin F., Rasilo P. et al. (2019). Rotational single sheet tester for multiaxial magneto-mechanical effects in steel sheets. IEEE Transactions on magnetic, Vol. 55, (3).
54. Gorkunov E. S., Yakushenko E. I., Zadvorkin S. M., Mushnikov A. N. (2015) Effect of elastic deformations on the magnetic characteristics of chromium-nickel steels. Fizika metallov i metallovedenie, Vol. 116, (2), pp. 156 – 164. [in Russian language]
55. Aleksandrov Yu. V. (2010). Features of the application of the magnetic method for assessing the stress state of oil and gas pipelines taking into account the action of the internal pressure of the product. Nauka v neftyanoy i gazovoy promyshlennosti, (4), pp. 7 – 10. [in Russian language]
56. Rekik M., Hubert O., Daniel L. (2014). Influence of a multiaxial stress on the reversible and irreversible magnetic behaviour of a 3 %Si–Fe alloy. International Journal of Applied Electromagnetics and Mechanics, Vol. 44, (3–4), pp. 301 – 315.
57. Bol'shakov V. N., Gorbash V. G., Kulik A. F. (1990). Device for monitoring mechanical stresses by changing the local remanent magnetization. Defektoskopiya, (2), pp. 57 – 62. [in Russian language]
58. Gorkunov E. S. (2014). Various states of remanent magnetization and their resistance to external influences. On the question of the "Method of magnetic memory". Defektoskopiya, (11), pp. 3 – 21. [in Russian language]
59. Kulak S. M., Novikov V. F. (2015). Determination of mechanical stresses in steel by the method of magnetoelastic demagnetization. Zavodskaya laboratoriya. Diagnostika materialov, Vol. 81, (7), pp. 56 – 59. [in Russian language]
60. Dubov A. A. (2016). Fundamental differences between the metal magnetic memory method and other known magnetic non-destructive testing methods. Results and prospects for the development of the method. Territoriya NDT, (2), pp. 64 – 68. [in Russian language]
61. Klyuev V. V., Artem'ev B. V. (2016). Problems of using the magnetic NDT method for determining the stress-strain state of metal structures. Kontrol'. Diagnostika, (10), pp. 12–13. [in Russian language] DOI: 10.14489/td.2016.10.pp.012-013
62. Gorkunov E. S., Efimov A. G., Shubochkin A. E., Artem'ev B. V. (2016). On the application of the magnetic NDT method to determine the stress-strain state of metal structures. V mire nerazrushayushchego kontrolya, Vol. 19, (3), pp. 43 – 46. [in Russian language]
63. Arkulis M. B., Baryshnikov M. P., Misheneva N. I., Savchenko Yu. I. (2009). On the problems of applicability of the metal magnetic memory method for monitoring the stress-strain state of metal structures. Defektoskopiya, (8), pp. 10 – 12. [in Russian language]
64. Shi P., Su S., Chen Z. (2020). Overview of Researches on the Nondestructive Testing Method of Metal Magnetic Memory: Status and Challenges. Journal of Nondestructive Evaluation, Vol. 39, 43.
65. Gorkunov E. S. (2015). Different remanence states and their resistance to external effects. Discussing the so-called magnetic memory method. Insight – Non-Destructive Testing and Condition Monitoring, Vol. 57, (12), pp. 709 – 717.
66. Shikunenko V. G. (2011). Experience in diagnostics of pipelines of heating networks using a non-contact magnetometric method. Novosti teplosnabzheniya, 132(8). [in Russian language]

This article  is available in electronic format (PDF).

td_2020_12_pp_004_023_open.pdf

 

 
Search
Rambler's Top100 Яндекс цитирования