Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2022, 06 June

DOI: 10.14489/td.2022.06.pp.048-059

Gulyaev I. V., Stepanov S. E., Vasenin A. B., Kosorotov A. A., Kryukov O. V.
APPLICATION SOFTWARE DEVELOPMENT FOR THE GEOTECHNICAL MONITORING SYSTEM OF GAS PIPELINES
(pp. 48-59)

Abstract. The article considers a scientifically based approach that ensures trouble-free operation of large-scale distributed production facilities using a set of measures, one of the components of which is an automated monitoring system. A procedure for automated collection of a large array of data from the entire object in a relatively short period of time with automatic interpretation and visualization of information in forms convenient for decision-making is proposed. It is shown that one of the most important indicators of the functioning of pipeline transport is the level of the stress-strain state of the metal, which depends on internal and external factors – the parameters of the transportation process, the state of the pipeline metal, ground movement and other meteorological and technological factors. At the same time, the integration of the monitoring system with automated systems for planning and carrying out routine maintenance and repair work, as well as closer integration with automated process control systems and dispatch control systems, is very significant. As a result of the creation of such a system of integrated monitoring of the gas pipeline, data exchange speeds are increased, their analytical processing is provided, as well as rapid visualization on the control room operator's workstation. The implementation of these procedures for automatic interpretation and visual representation of large volumes of incoming information contributes to the support of operational decision-making during the operation of oil and gas pipelines in adverse environmental conditions.

Keywords: intelligent monitoring system, main gas pipeline, application software, stress-strain state, high-risk object, visualization of results.

I. V. Gulyaev (Mordovsky State University named after N. P. Ogarev, Saransk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. E. Stepanov, A. B. Vasenin (OOO Gazprom Projecting, Nizhny Novgorod, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. A. Kosorotov, O. V. Kryukov (OOO TSN-electro, Nizhny Novgorod, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Rules for the operation of main gas pipelines. (2010). Gazprom Organization Standard No. 2-3.5-454–2010. Moscow. [in Russian language]
2. Serebryakov A. V. (2016). Active and Adaptive Algorithms of Autonomous Power Plants Control and Monitoring. 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016: Proceedings. Chelyabinsk.
3. Voronkov V. I., Rubtsova I. E. (2010). Power supply and electrical equipment of linear consumers of main gas pipelines. Gazovaya promyshlennost', (3), pp. 32 – 37. [in Russian language]
4. "On industrial safety of hazardous industrial facilities". (2021). Federal law No. 116-FZ. Moscow. [in Russian language]
5. Milov V. R., Suslov B. A. (2009). Intellectualization of management decision support in the gas industry. Avtomatizatsiya v promyshlennosti, (12), pp. 16 – 20. [in Russian language]
6. Repin D. G. (2017). Concepts of system of monitoring of technical condition of gascompressor stations. Kontrol'. Diagnostika, (12), pp. 30 – 35. [in Russian language] DOI 10.14489/td.2017.12.pp.030-035
7. Serebryakov A. V. (2017). Energy Efficient Power Supply Systems of Oil and Gas Pipelines Electric Drives. Bulletin of South Ural State University. Series: Power Engineering, Vol. 17, (3), pp. 102 – 110.
8. Teplukhov D. Y. (2019). Method for Stabilizing the Operation of Synchronous Machines Using a Virtual Load Sensor. Russian Electrical Engineering, Vol. 90, (7), pp. 473 – 478.
9. Kryukov O. V. (2016). Monitoring of operating conditions of electric motors of gascompressor units. Kontrol'. Diagnostika, (12), pp. 50 – 58. [in Russian language] DOI 10.14489/td.2016.12.pp.050-058.
10. Kryukov O. V. (2018). Estimation of operational factors of electrically driven gas pumping units according to regulatory requirements for monitoring. Kontrol'. Diagnostika, (10), pp. 50 – 57. [in Russian language] DOI 10.14489/td.2018.10.pp.050-057.
11. Puzhaylo A. F., Spiridovich E. A., Voronkov V. I. et al. (2010). Energy saving and automation of electrical equipment of compressor stations. Nizhny Novgorod: Giprogaztsentr. [in Russian language]
12. Vasenin A. B., Stepanov S. E., Titov V. G. (2020).Implementation of encapsulated electric gas compressor units at the facilities of Gazprom PJSC. Izvestiya vuzov. Elektromekhanika, Vol. 63, (1), pp. 31 – 37. [in Russian language]
13. Kryukov O. V. (2005). Fast Walsh Transform Algorithms in Microprocessor Control Systems. Izvestiya vuzov. Elektromekhanika, (4), pp. 39 – 44. [in Russian language]
14. Blagodarov D. A., Dulnev N. N., Safonov Y. M., et al. (2018). Intelligent Control of Electric Machine Drive Systems. 10th International Conference on Electrical Power Drive Systems, ICEPDS 2018: Conference Proceedings. Novocherkassk.
15. Belousov A. S., Meshcheryakov V. N., Valtchev S. (2019). Development of a Control Algorithm for Three-Phase Inverter in Two-Phase Electric Drives Reducing the Number of Commutations. Proceedings of the 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, pp. 444 – 449. Lipetsk. DOI 10.1109/summa48161.2019.8947487.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.06.pp.048-059

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования