Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2022, 09 September

DOI: 10.14489/td.2022.09.pp.036-045

Lozovsky I. N., Loseva E. S., Syasko V. A.
WAVELET DENOISING FOR LOW STRAIN PILE INTEGRITY TESTING
(pp. 36-45)

Abstract. Low strain impact test is widely used to assess the structural integrity of reinforced concrete piles due to its high productivity and cost effectiveness. However, a low signal-to-noise ratio may prevent proper evaluation of pile length and integrity using the standard data analysis approaches. In this paper, we propose a technique for the time-frequency analysis of low strain test data, which allows us to separate the useful components of a signal from the unwanted ones. The technique is based on the continuous wavelet transform with the complex Morlet wavelet, which is shown to be the most suitable for the low strain test data decomposition. To filter the signal, the moving median of the square modulus of the continuous wavelet transform is calculated in the frequency band of the initial impact pulse. The capabilities of the technique are illustrated by the low strain test signals with the artificial noise and the results of a field test of a 30m long bored pile.

Keywords: piles, bored piles, drilled shafts, non-destructive testing, pile integrity testing, low strain impact integrity testing, continuous wavelet transform, wavelet denoising.

I. N. Lozovsky (Geoelectromagnetic Research Center, Branch of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (GEMRC IPE RAS), Troitsk, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. S. Loseva, V. A. Syasko (Saint Petersburg Mining University, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Fleming K., Weltman A., Randolph M., Elson K. (2008). Piling Engineering. London: Taylor & Francis. Available at: https://doi.org/10.1201/b22272
2. Amir J. M. (2017). Pile Integrity Testing: History, Present Situation and Future Agenda. Proceedings of the 3rd Bolivian International Conference on Deep Foundations, pp. 17 – 32. Madison.
3. Amir J. M. (2020). Integrity Testing. 2nd ed. Available at: https://www.piletest.com/show.asp?id=Engineer (Accessed: 20.04.2022)
4. Loseva E. S., Osokin A. I., Mironov D. A., Dyakonov I. P. (2020). Specific Features of the Construction and Quality Control of Pile Foundations in Engineering and Geological Conditions of Saint Petersburg. Architecture and Engineering, Vol. 5, (2), pp. 38 – 45.
5. Lozovskiy I. N., Zhostkov R. A., Churkin A. A. (2020). Numerical simulation of ultrasonic testing of pile continuity. Defektoskopiya, (1), pp. 3 – 13. Available at: https://doi.org/10.31857/S0130308220010017 [in Russian language]
6. Muhin A. A., Churkin A. A., Lozovskiy I. N. (2018). Limitations of the scope of the seismoacoustic method for monitoring the continuity of concrete piles. Transportnoe stroitel'stvo, (9), pp. 20 – 24. [in Russian language]
7. Muhin A. A., Lozovskiy I. N., Churkin A. A. (2019). Application of non-destructive testing of pile continuity by seismoacoustic method. Organization standard No. STO EGEOS 1–1.2–001–2017. Geotekhnika, Vol. 11, (4), pp. 68 – 78. [in Russian language]
8. Addison P. S., Watson J. N. (1997). Wavelet Analysis for Low Strain Integrity Testing of Foundation Piles. Proceedings of 5th International Conference on Inspection, Appraisal, Repairs, Maintenance of Buildings and Structures, pp. 15 – 16. Singapore.
9. Watson J. N., Addison P. S., Sibbald A. (1999). The Denoising of Sonic Echo Test Data Through Wavelet Transform Reconstruction. Shock and Vibration. 1999. V. 6. P. 6. URL: https://doi.org/10.1155/1999/175750
10. Grossmann A., Morlet J. (1984). Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis, Vol. 15, (4), pp. 723 − 736.
11. Coifman R. (Ed.) (1992). Wavelets and their Applications. Boston: Jones and Barlett.
12. Nagornov O. V., Nikitaev V. G., Prostokishin V. M. et al. (2010). Wavelet analysis in examples: textbook. Moscow: NIYaU MIFI. [in Russian language]
13. Koronovskiy A. A., Hramov A. E. (2003). Continuous wavelet analysis and its applications. Moscow: Fizmatlit. [in Russian language]
14. Ni S. H., Isenhower W. M., Huang Y. H. (2012). Continuous Wavelet Transform Technique for Low-Strain Integrity Testing of Deep Drilled Shafts. Journal of GeoEngineering, Vol. 7, (3), pp. 97 − 105. Available at: https://doi.org/10.6310/jog.2012.7(3).3
15. Ni S. H., Yang Y. Z., Tsai P. H., Chou W. H. (2017). Evaluation of Pile Defects Using Complex Continuous Wavelet Transform Analysis. NDT and E International, Vol. 87, pp. 50 – 59. Available at: https://doi:10.1016/j.ndteint.2017.01.007
16. Ni S. H., Yang Y. Z., Lyu C. R. (2017). Application of Wavelet Analysis for the Impulse Response of Pile. Smart Structures and Systems, Vol. 19, (5), pp. 513 − 521. Available at: https://doi.org/10.12989/sss.2017.19.5.513
17. Ni S. H., Li J. L., Yang Y. Z., Lai Y. Y. (2019). Applicability of complex wavelet transform to evaluate the integrity of commonly used pile types. Journal of GeoEngineering, Vol. 14, (1), pp. 21 – 30. Available at: https://doi: 10.6310/jog.201903_14(1).3
18. Zheng W., Zheng W., Wang S. et al. (2020). Damage Localization of Piles Based on Complex Continuous Wavelet Transform: Numerical Example and Experimental Verification. Shock and Vibration, Vol. 2020, pp. 1 – 9. Available at: https://doi: 10.1155/2020/8058640
19. Liu J. L., Lin C. X, Ye X. J. et al. (2021). An improved Algorithm for Pile Damage Localization Based on Complex Continuous Wavelet Transform. Smart Structures and Systems, Vol. 27, (3), pp. 493 – 506. Available at: https://doi.org/10.12989/sss.2021.27.3.493
20. ASTM D5882-16. Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. West. (2016). American Society for Testing and Materials No. ASTM D5882-16. Conshohocken: ASTM International. Available at: https://doi.org/10.1520/D5882-16
21. Loseva E., Lozovsky I., Zhostkov R. (2022). Identifying Small Defects in Cast-in-Place Piles using Low Strain Integrity Testing. Indian Geotechnical Journal, Vol. 52, (2), pp. 270 – 279. Available at: https://doi.org/10.1007/s40098-021-00583-y
22. Churkin A. A., Lozovskiy I. N., Zhostkov R. A. (2020). Numerical modeling of seismoacoustic methods for quality control of piles. Izvestiya HFY. Seriya fizicheskaya, Vol. 84, (1), pp. 124 – 127. Available at: https://doi.org/10.31857/S0367676520010093 [in Russian language]
23. Churkin A. A., Lozovskiy I. N., Frolov V. E. et al. (2018). Comprehensive study of the quality of bored piles at the experimental site using non-destructive testing methods. Geotekhnika, Vol. 10, (5-6), pp. 72 – 83. [in Russian language]
24. Churkin A. A., Kapustin V. V., Lozovskiy I. N., Zhostkov R. A. (2021). Study of the Influence of Parameters of the Pile-Soil System on the Dynamic Attributes of an Acoustic Signal Using Numerical Simulation. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, Vol. 332, (1), pp. 129 – 140. Available at: http://doi.org/10.18799/24131830/2021/1/3006 [in Russian language]
25. Zheng C., Kouretzis G. P., Ding X. et al. (2015). Three-Dimensional Effects in Low-Strain Integrity Testing of Piles: Analytical Solution. Canadian Geotechnical Journal, Vol. 53, (2), pp. 225 – 235. Available at: https://doi.org/10.1139/cgj-2015-0231
26. Yarmolenko A. S., Skobenko O. V. (2018). Application of the Theory of Wavelets for Compression and Filtration of Geoinformation. Journal of Mining Institute, Vol. 234, (6), pp. 612 – 623. Available at: http://dx.doi.org/10.31897/pmi.2018.6.612
27. Ermolin E. Yu., Ingerov O., Yankilevich A. A., Pokrovskaya N. N. (2019). AMT Soundings in the Dead Band Within the Chukotka Region (Russian Far East). Journal of Mining Institute, Vol. 236, (2), pp. 125 – 132. Available at: https://doi.org/10.31897/pmi.2019.2.125
28. Zhukovskiy Y. L., Kovalchuk M. S., Batueva D. E., Senchilo N. D. (2021). Development of an Algorithm for Regulating the load Schedule of Educational Institutions Based on the Forecast of Electric Consumption Within the Framework of Application of the Demand Response. Sustainability, Vol. 13, 24, pp. 1 – 26. Available at: http://dx.doi.org/10.3390/su132413801
29. Morenov V., Leusheva E., Lavrik A. et al. (2022). Gas-Fueled Binary Energy System with Low-Boiling working fluid for enhanced power generation. Energies, Vol. 15, (7), pp. 1 – 15. Basel. Available at: http://dx.doi.org/10.3390/en15072551
30. Koteleva N., Valnev V., Frenkel I. (2021). Investigation of the Effectiveness of an Augmented Reality and a Dynamic Simulation System Collaboration in oil Pump Maintenance. Applied Sciences, Vol. 12, (1), pp. 1 – 18. Available at: https://doi.org/10.3390/app12010350
31. Bolobov V., Martynenko Y. V., Voronov V. et al. (2022). Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions, Vol. 7, (1), pp. 1 – 10. Available at: https://doi.org/10.3390/inventions7010014
32. Dvoynikov M., Budovskaya M. (2022). Development of a Hydrocarbon Completion System for Wells with Low Bottomhole Temperatures for Conditions of Oil and Gas Fields in Eastern Siberia. Journal of Mining Institute, Vol. 253, pp. 12 – 22. Available at: https://doi.org/10.31897/PMI.2022.4
33. Islamov S. R., Bondarenko A. V., Gabibov A. F., Mardashov D. V. (2020). Polymer Compositions for Well Killing Operation in Fractured Reservoirs. Advances in Raw Material Industries for Sustainable Development Goals. 1st ed, pp. 343 – 351. CRC Press. Available at: https://doi.org/10.1201/9781003164395-43
34. Litvinenko V., Tsvetkov P., Dvoynikov M., Buslaev G. (2020). Barriers to Implementation of Hydrogen Initiatives in the Context of Global Energy Sustainable Development. Journal of Mining Institute, Vol. 244, pp. 428 – 438. Available at: https://doi.org/10.31897/pmi.2020.4.5
35. Shammazov I. A., Sidorkin D. I., Dzhemilev E. R. (2022). Research of the Dependence of the Pipeline Ends Displacement Value when Cutting out Its Defective Section on the Elastic Stresses in the Pipe Body. IOP Conference Series: Earth and Environmental Science, Vol. 988, (2), pp. 1 – 9. Available at: https://doi.org/10.1088/1755-1315/988/2/022077

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.09.pp.036-045

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования