Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
18 | 11 | 2024
2022, 10 October

DOI: 10.14489/td.2022.10.pp.024-032

Churkin А. А., Loseva E. S., Lozovsky I. N., Syasko V. A.
INCREASING THE RELIABILITY OF THE LOW STRAIN INTEGRITY TESTING OF PILES UNDER EXISTING STRUCTURES
(pp. 24-32)

Abstract. Inspection of piles located under the pile cap or an existing building is a common task in the practice of capital construction. The low strain impact testing allows us to estimate the pile length and the presence of defects in its body. This provides designers and builders with information on structures, which can be considered when planning the further operation of the foundation. Improving the reliability of test results for examining piles under cap is the issue of interest. On the example of field test results, the application of the multifrequency signal excitation during data collection and the wavelet analysis of signals during data processing are shown.

Keywords: pile testing, integrity testing, nondestructive testing, low strain impact testing, guided waves, data processing, wavelet analysis.

А. А. Churkin (NIIOSP named after N. M. Gersevanov JSC SIC “Construction”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. S. Loseva (Saint Petersburg Mining University, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. N. Lozovsky (Geoelectromagnetic Research Center, Branch of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (GEMRC IPE RAS), Troitsk, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Syasko (Saint Petersburg Mining University, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Loseva E., Osokin A., Mironov D., Dyakonov I. (2020). Specific Features of the Construction and Quality Control of Pile Foundations in Engineering and Geological Conditions of Saint Petersburg. Architecture and engineering, Vol. 5, (2), pp. 38 – 45. Available at: https://doi.org/10.23968/2500-0055-2020-5-2-38-45
2. Churkin A. A. (2020). Development of methods for using a geophysical complex for quality control of buried monolithic structures. Moscow: MGU im. M. V. Lomonosova. Available at: https://doi.org/10.13140/RG.2.2.15557.17122 [in Russian language]
3. Kapustin V. V., Vladov M. L. (2020). Technical geophysics. Methods and tasks. Geotekhnika, Vol. 12, (4), pp. 72 – 85. Available at: https://doi.org/10.25296/2221-5514-2020-12-4-72-85 [in Russian language]
4. Klingmuller O. (1993). Sonic Echo Pile Integrity Testing and Quality Control. Ground Engineering, Vol. 26, (10), pp. 25 – 30.
5. Kapustin V. V. (2009). Application of wave methods to determine the length of piles. Tekhnologii seysmorazvedki, (2), pp. 113 – 117. [in Russian language]
6. Kharitonov A. Yu., Ulybin A. V. (2020). Low Strain Integrity Testing of Piles. Application for Piles Located under Pile Cap. Construction of Unique Buildings and Structures, Vol. 92, 9201, pp. 1 – 10. Available at: https://doi.org/10.18720/CUBS.92.1
7. Kapustin V. V., Hmel'nitskiy A. Yu. (2013). Problems of shallow seismic exploration and ground penetrating radar as part of engineering geological surveys. Application of wave methods for non-destructive testing of foundation structures: textbook. Moscow: Universitetskaya kniga. [in Russian language]
8. Muhin A. A., Churkin A. A., Lozovskiy I. N. (2018). Limitations of the scope of the seismoacoustic method for monitoring the continuity of concrete piles. Transportnoe stroitel'stvo, (9), pp. 20 – 24. [in Russian language]
9. Cosic M., Folic B., Folic R. (2014). Numerical Simulation of the Pile Integrity Test on Defected Piles. Acta Geotechnica Slovenica, Vol. 11, (2), pp. 5 – 19.
10. Wang Z., Chen L., Xiao Z. (2015). Quantitative Analysis of Low-strain Characteristics on Defective Piles with Constriction or Segregation. The Open Civil Engineering Journal, (9), pp. 1 – 6.
11. Kapustin V. V. (2011). On the issue of the physical foundations of the acoustic method for testing piles. Inzhenernye izyskaniya, (11), pp. 10 – 15. [in Russian language]
12. Hmel'nitskiy A. Yu., Kapustin V. V., Vladov M. L. (2012). Experimental studies of the influence of the enclosing soil on the propagation of seismic waves in piled structures. Inzhenernye izyskaniya, (6), pp. 16 – 22. [in Russian language]
13. Loseva E., Lozovsky I., Zhostkov R. (2022). Identifying Small Defects in Cast-in-Place Piles Using Low Strain Integrity Testing. Indian Geotechnical Journal, Vol. 52, (2), pp. 270 – 279. Available at: https://doi.org/10.1007/s40098-021-00583-y
14. Watson J. N., Addison P. S., Sibbald A. (1999). The Denoising of Sonic Echo Test Data Through Wavelet Transform Reconstruction. Shock and Vibration, Vol. 6. Available at: https://doi.org/10.1155/1999/175750
15. Ni S. H., Yang Y. Z., Tsai P. H., Chou W. H. (2017). Evaluation of Pile Defects Using Complex Continuous Wavelet Transform Analysis. NDT and E International, Vol. 87, pp. 50 – 59. Available at: https://doi:10.1016/j.ndteint.2017.01.007
16. Ni S. H., Li J. L., Yang Y. Z., Lai Y. Y. (2019). Applicability of Complex Wavelet Transform to Evaluate the Integrity of Commonly Used Pile Types. Journal of GeoEngineering, Vol. 14, (1), pp. 21 – 30. Available at: https://doi: 10.6310/jog.201903_14(1).3
17. Liu J. L., Lin C. X, Ye X. J, et al. (2021). An Improved Algorithm for Pile Damage Localization Based on Complex Continuous Wavelet Transform. Smart Structures and Systems, Vol. 27, (3), pp. 493 – 506. Available at: https://doi.org/10.12989/sss.2021.27.3.493
18. Lozovskiy I. N., Loseva E. S., Syas'ko V. A. (2022). Filtering data of seismoacoustic testing of pile continuity using continuous wavelet transform. Kontrol'. Diagnostika, Vol. 25, (9), pp. 36 – 45. [in Russian language]
19. Shmurak D. V., Churkin A. A., Lozovskiy I. N., Zhostkov R. A. (2022). Spectral analysis of data from a parallel seismic method for surveying underground structures. Izvestiya Rossiyskoy akademii nauk. Seriya Fizicheskaya, Vol. 86, (1), pp. 116 – 121. Available at: http://dx.doi.org/10.31857/S0367676522010252 [in Russian language]
20. Yarmolenko A. S., Skobenko O. V. (2018). Application of the Theory of Wavelets for Compression and Filtration of geoinformation. Journal of Mining Institute, Vol. 234, (6), pp. 612 – 623. Available at: http://dx.doi.org/10.31897/pmi.2018.6.612
21. Ermolin E. Yu., Ingerov O., Yankilevich A. A., Pokrovskaya N. N. (2019). AMT Soundings in the Dead Band Within the Chukotka Region (Russian Far East). Journal of Mining Institute, Vol. 236, (2), pp. 125 – 132. Available at: https://doi.org/10.31897/pmi.2019.2.125
22. Zhukovskiy Y. L., Kovalchuk M. S., Batueva D. E., Senchilo N. D. (2021). Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption Within the Framework of Application of the Demand Response. Sustainability, Vol. 13, 24, pp. 1 – 26. Available at: http://dx.doi.org/10.3390/su132413801
23. Morenov V., Leusheva E., Lavrik A. et al. (2022). Gasfueled Binary Energy System with Low-Boiling Working Fluid for Enhanced Power Generation. Energies, Vol. 15, (7), pp. 1 – 15. Basel. Available at: http://dx.doi.org/10.3390/en15072551
24. Koteleva N., Valnev V., Frenkel I. (2021). Investigation of the Effectiveness of an Augmented Reality and a Dynamic Simulation System Collaboration in oil Pump Maintenance. Applied Sciences, Vol. 12, (1), pp. 1 – 18. Available at: https://doi.org/10.3390/app12010350
25. Bolobov V., Martynenko Y. V., Voronov V. еt al. (2022). Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions, Vol. 7, (1), pp. 1 – 10. Available at: https://doi.org/10.3390/inventions7010014
26. Dvoynikov M., Budovskaya M. (2022). Development of a Hydrocarbon Completion System for Wells with Low Bottomhole Temperatures for Conditions of oil and Gas Fields in Eastern Siberia. Journal of Mining Institute, Vol. 253, pp. 12 – 22. Available at: https://doi.org/10.31897/PMI.2022.4
27. Islamov S. R., Bondarenko A. V., Gabibov A. F., Mardashov D. V. (2020). Polymer Compositions for Well Killing Operation in Fractured Reservoirs. Advances in Raw Material Industries for Sustainable Development Goals. 1st ed, pp. 343 – 351. CRC Press. Available at: https://doi.org/10.1201/9781003164395-43
28. Litvinenko V., Tsvetkov P., Dvoynikov M., Buslaev G. (2020). Barriers to Implementation of Hydrogen Initiatives in the Context of Global Energy Sustainable Development. Journal of Mining Institute, Vol. 244, pp. 428 – 438. Available at: https://doi.org/10.31897/pmi.2020.4.5
29. Shammazov I. A., Sidorkin D. I., Dzhemilev E. R. (2022). Research of the Dependence of the Pipeline Ends Displacement Value when Cutting Out its Defective Section on the Elastic Stresses in the Pipe Body. IOP Conference Series: Earth and Environmental Science, Vol. 988, (2), pp. 1 – 9. Available at: https://doi.org/10.1088/1755-1315/988/2/022077

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.10.pp.024-032

and fill out the  form  

 

 
Search
Rambler's Top100 Яндекс цитирования