Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
17 | 05 | 2024
2023, 04 April

DOI: 10.14489/td.2023.04.pp.024-037

Fedotov M. Yu.
METHODS FOR THE FORMATION OF SPATIAL TOPOLOGY AND INTERROGATION OF FIBER-OPTIC SENSORS FOR DIAGNOSTICS OF COMPOSITE STRUCTURES (Review)
(pp. 24-37)

Abstract. The paper formulates general requirements for the formation of spatial topologies of quasi-distributed fiber-optic systems of embedded monitoring based on fiber Bragg gratings for monolithic and three-layer structures made of polymer composite materials. The main types of spatial topologies of fiber-optic sensors for the implementation of an effective quasi-distributed system of embedded diagnostics of composite structures are considered. The main methods for interrogating arrays of fiber-optic sensors that form a quasi-distributed system of embedded diagnostics of composite structures are analyzed, an overview and analysis of the technical characteristics of foreign and domestic interrogation equipment is given. It has been established that for practical applications, taking into account the relative simplicity of physical implementation and the availability of interrogation equipment, it is advisable to use a mixed topology of fiber-optic sensors, which includes elements of serial and star topologies, with he spectral channel separation method being the most optimal.

Keywords: quasi-distributed fiber optic sensor, spatial topology, composite structure, interrogation method, interrogator, embedded diagnostics, fiber Bragg grating.

M. Yu. Fedotov (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) 

1. Valueva M. I., Zelenina I. V., Mishurov K. S., Gulyaev I. N. (2019). Review of publications on the development of blades from polymer composite materials for aircraft engine fan. Vestnik mashinostroeniya, (2), pp. 34 – 41. [in Russian language]
2. Gunyaeva A. G., Kurnosov A. O., Gulyaev I. N. (2021). High-Temperature Polymer Composite Materials Developed in FSUE VIAM for Aerospace Engineering: Past, Present, Future (Review). Trudy VIAM, 95(1), pp. 43 – 53. [in Russian language] DOI: 10.18577/2307-6046-2021-0-1-43-53
3. Nasonov F. A. (2014). Development of methods to minimize displacement of honeycomb core when molding structures made of polymer composites. Trudy MAI, 74. [in Russian language]
4. Babaytsev A. V., Nasonov F. A., Rabinskiy L. N., Yan N. M. (2021). Application of the Probing Hole Method and Digital Image Correlation Method to Determine Residual Stresses in a Polymer Composite Material. Mekhanika kompozitsionnyh materialov i konstruktsiy, Vol. 27 (3), pp. 427 – 440. [in Russian language] DOI: 10.33113/mkmk.ras.2021.27.03.427_440.09
5. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2022). Testing of cfrp specimens with impact damage using the acoustic emission method and tensometry. Kontrol'. Diagnostika, Vol. 25 7(289). С. 14 – 25. DOI: 10.14489/td.2022.07.pp.014-025
6. Aniskovich V. A., Budadin O. N., Kozel'skaya S. O. et al. (2022). Integration of FOS into a composite cylindrical body made of CFRP by continuous winding. Kontrol'. Diagnostika, Vol. 25 2(284), pp. 16 – 23. [in Russian language] DOI: 10.14489/td.2022.02.pp.016-023
7. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2021). Acoustic emission signals location in duralumin and carbon fiber samples by optical fiber and piezoelectric transducer sensors antenna. Kontrol'. Diagnostika, Vol. 24 2(272), pp. 18 – 29. [in Russian language] DOI: 10.14489/td.2021.02.pp.018-029
8. Moskvicheva E. D. (2021). Possible ways and problems of implementation of embedded control technologies in composite structures of civil aircraft construction. XXV Tupolev Readings (School of young scientists): International youth scientific conference dedicated to the 60th anniversary of the first human space flight and the 90th anniversary of Kazan National Research Technical University named after A.N. Tupolev-KAI. Conference Proceedings: collection of reports: in 6 volumes, pp. 138 – 141. Kazan'. [in Russian language]
9. Fedotov M. Yu., Budadin O. N., Vasil'ev S. A. et al. (2019). The effect of integration of fiber optic sensors on the mechanical properties of polymer composite materials. Kontrol'. Diagnostika, (2), pp. 22 – 30. [in Russian language] DOI: 10.14489/td.2019.02.pp.022-030
10. Fedotov M. Yu., Budadin O. N., Kozel'skaya S. O. (2019). Technological aspects of creating a fiber-optic non-destructive testing of sandwich composite structures. Kontrol'. Diagnostika, (7), pp. 24 – 29. [in Russian language] DOI: 10.14489/td.2019.07.pp.024-029
11. Mahsidov V. V., Fedotov M. Yu., Goncharov V. A., Sorokin K. V. (2014). Mechanical properties of polymer composites with integrated optical fiber: a review. Deformatsiya i razrushenie materialov, (9), pp. 2 – 7. [in Russian language]
12. Takeda N., Okabe Y., Kuwahara J., et al. (2005). Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology, Vol. 65, pp. 2575 – 2587.
13. Muhametov R. R., Ahmadieva K. R., Deev I. S., Mahsidov V. V. (2016). Protective coating for fiber optic sensors. Uprochnyayushchie tekhnologii i pokrytiya, 141(9), pp. 29 – 34. [in Russian language]
14. Fedotov M. Yu., Budadin O. N., Kozel'skaya S. O. et al. (2022). Study of physical parameters of fibers of light guides for diagnostics of composite structures. Konstruktsii iz kompozitsionnyh materialov, 166(2), pp. 47 – 55. [in Russian language] DOI: 10.52190/2073-2562_2022_2_47
15. Fedotov M. Yu., Budadin O. N., Kozel'skaya S. O., Vasil'ev S. A. (2021). Study of the possibility of diagnosing the quality of composite structures by builtin fiber-optic sensors based on fiber Bragg gratings. Konstruktsii iz kompozitsionnyh materialov, 162(2), pp. 41 – 47. [in Russian language] DOI: 10.52190/2073-2562_2021_2_41
16. Mun'ko A. S., Varzhel' S. V., Arhipov S. V., Zabiyakin A. N. (2015). Protective coatings of the Bragg fiber grating to reduce the effect of mechanical impact on its spectral characteristics. Nauchno-tekhnicheskiy vestnik informatsionnyh tekhnologiy, mekhaniki i optiki, Vol. 15 (2), pp. 241 – 245. [in Russian language] DOI: 10.17586/2226-1494-2015-15-2-241-245
17. Fedotov M. Yu. (2022). Study of physical parameters of fiber light guides with Bragg gratings to create a diagnostic system for composite structures. Konstruktsii iz kompozitsionnyh materialov, 168(4), pp. 62 – 67. [in Russian language] DOI: 10.52190/2073-2562_2022_4_62
18. Fedotov M. Yu., Budadin O. N., Vasil'ev S. A. et al. (2019). Research of the integrated fiber-optic system for the diagnosis of carbon fiber reinforced plastic after the impact of technological molding modes. Kontrol'. Diagnostika, (1), pp. 42 – 49. [in Russian language] DOI: 10.14489/td.2019.01.pp.042-049.
19. Matveenko V. P., Kosheleva N. A., Serovaev G. S. (2021). Strain Measurements by FBG-Based Sensors Embedded in Various Materials Manufactured by Different Technological Processes. Procedia Structural Integrity: 4th, Virtual, Funchal, Madeira, pp. 508 – 516. DOI: 10.1016/j.prostr.2022.01.116
20. Matveenko V. P., Kosheleva N. A., Serovaev G. S. (2021). Experimental and theoretical results related to the measurement of deformations by fiber-optic sensors embedded in the material on Bragg gratings. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, (6), pp. 3 – 15. [in Russian language] DOI: 10.31857/S0572329921060088
21. Buy P. M., Belousova E. S., Tatur S. S. (2018). Fiber Optic Transmission Systems: Workshop. Ministry of Transport and Communications of the Republic of Belarus, Belarusian State University of Transport. Gomel': BelGUT. [in Russian language]
22. Feofilaktov S. V. (2019). Combined downhole thermometry systems with discrete fiber optic sensors based on dualelement Bragg structures. Kazan'. [in Russian language]
23. Buymistryuk G. Ya. (2013). Fiber optic sensors for extreme conditions. Control Engineering, 45(3), pp. 34 – 40. Available at: https://controleng.ru/wp-content/uploads/ce_46_p34_volokonno-opticheskie_datchik_dlya_ekstremal-nykh_uslovii.pdf [in Russian language]
24. Shelemba I. S. (2018). Methods of interrogation of distributed fiber optic measurement systems and their practical application. Novosibirsk. [in Russian language]
25. Pugovkin A. V. (2022). Fundamentals of building infocommunication systems and networks: textbook. Tomsk: Tomskiy gosudarstvenniy universitet sistem upravleniya i radioelektroniki. [in Russian language]
26. Zheng J. (2004). Analysis of Optical Frequency-Modulated Continuous-Wave Interference. Applied Optics, Vol. 43 21, pp. 4189 – 4198.
27. Grechishnikov V. M. (2018). Circuitry of Fiber Optic Devices: Textbook. Samara: Izdatel'stvo Samarskogo universiteta. [in Russian language]
28. Brooks J., Wentworth R., Youngquist R., et al. (1985). Coherencemultiplexing of fiber-optic interferometric sensors. Journal of Lightwave Technology, Vol. 3, pp. 1062 – 1072.
29. Udd E. (Ed.) (2008). Fiber Optic Sensors: An Introductory Course for Engineers and Scientists. Moscow: Tekhnosfera. [in Russian language]
30. Svirskiy Yu. A., Trunin Yu. P., Pankov A. V. et al. (2017). On-Board Monitoring Systems (OBS) and prospects of application of fiber-optic sensors in them. Kompozity i nanostruktury, Vol. 9 33(1), pp. 35 – 44. [in Russian language]
31. Zaytsev M. D., Pankov A. V., Svirskiy Yu. A. (2015). On-Board Monitoring Systems and Prospects of Application of Fiber-Optic Sensors in Them. Strength of Aircraft Structures: Collection of Articles from the Scientific and Technical Conference Dedicated to the 110th Anniversary of Academician A. I. Makarevsky, pp. 60 – 68. Zhukovskiy: Tsentral'niy aerogidrodinamicheskiy institut im. prof. N. E. Zhukovskogo. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.04.pp.024-037

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования