Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2023, 07 July

DOI: 10.14489/td.2023.07.pp.044-050

Danilaev M. P., Drobyshev S. V., Karandashov S. A., Klabukov M. A., Kuklin V. A., Lunev I. V.
DIELECTRIC SPECTROSCOPY METHOD FOR POLAR POLYMERS ELASTIC PROPERTIES DIAGNOSTICS
pp. 44-50)

Abstract. The mechanical properties of polymer materials are changes under the complex influence of such climatic factors as, for example, solar radiation, temperature changes, high humidity, and the impact of microorganisms – destructors. The methods of non-invasive diagnostics have to be used for changes prediction of the polymers materials products mechanical properties. The dielectric spectroscopy possibility using for diagnosing the modulus of elasticity of polymeric materials is considered in that paper. The results of elasticity modulus investigation by the dielectric spectroscopy using the DiMarzio–Bishop model and the mechanical measurements method are considered and compared in that paper. The results of dielectric and mechanical properties of polymers samples (polymethylmethacrylate, polycarbonate and polyvinylchloride) investigation are considered in that paper. These polymers are polar, so their mechanical properties in the elastic region of deformations can be investigate by dielectric spectroscopy method. This is due to the fact that the elastic deformations of a polymer are determined by the deformation of its macromolecules. It is show, that there are qualitative agreements between results of that measurement and the DiMarzio–Bishop model have to be refinement. The dipoles are represented as a spheres and interaction between dipoles are neglected in the DiMarzio–Bishop model. In our opinion, the interaction between dipoles in polymeric macromolecules is inevitable, and the configuration of dipoles differs from spherical. The necessity of using the calibration coefficient in the DiMarzio–Bishop model is shown by comparing the results of elastic modulus experimental measurements by the mechanical method and the dielectric spectroscopy method. This calibration factor takes into account the average number of dipoles in a macromolecule with a coefficient proportionality ∼6,7⋅10–5.

Keywords: dielectric spectroscopy, polymeric materials, elastic module, DiMarzio–Bishop model, elastic deformation of polymers.

M. P. Danilaev, S. V. Drobyshev, S. A. Karandashov, M. A. Klabukov (Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Kuklin (Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia, Kazan Federal University, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. V. Lunev (Kazan Federal University, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Farah S., Anderson D. G., Langer R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Advanced drug delivery reviews, Vol. 107, pp. 367 – 392. DOI: 10.1016/j.addr.2016.06.012
2. Mayya H. B., Pai D., Kini V. M., Padmaraj N. H. (2021). Effect of marine environmental conditions on physical and mechanical properties of fiber-reinforced composites: a review. Journal of The Institution of Engineers (India): Series C, Vol. 102, pp. 843 – 849. DOI: 10.1007/s40032-021-00676-w
3. Rosa D. S., Angelini J. M. G., Agnelli J. A. M., Mei L. H. I. (2005). The use of optical microscopy to follow the degradation of isotactic polypropylene (iPP) subjected to natural and accelerated ageing. Polymer Testing, Vol. 24 (8), pp. 1022–1026. DOI: 10.1016/j.polymertesting. 2005.07.009
4. Plastics–Determination of Tensile Properties. Part 1. General Principles. (2012). International Standard No. ISO 527-1:2012. International Standards Organization.
5. DiMarzio E. A., Bishop M. (1974). Connection between the macroscopic electric and mechanical susceptibilities. The Journal of chemical physics, Vol. 60 (10), pp. 3802 – 3811. DOI: 10.1063/1.1680822
6. Gainaru C., Hecksher T., Olsen N. B. et al. (2012). Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides. The Journal of Chemical Physics, Vol. 137 (6). DOI: 10.1063/1.4740236
7. Dı́az-Calleja R., Riande E. (2004). Comparative study of mechanical and dielectric relaxations in polymers. Materials Science and Engineering, A, Vol. 370 (1–2), pp. 21 – 33. DOI: 10.1016/j.msea.2003.08.069
8. Evlampieva N. P., Kurmaz S. V., Il'yasova Yu. V. (2016). Conformational and kinetic properties of hyperbranched polymethyl methacrylates in solutions. Vestnik Sankt-Peterburgskogo universiteta. Fizika. Himiya, Vol. 3 (3), pp. 267 – 278. [in Russian language]. DOI: 10.21638/11701/spbu04.2016.303
9. Kargin V. A., Kabanov V. A. (Eds.) (1972). Encyclopedia of polymers: in 3 volumes. Moscow: Sovetskaya entsiklopediya. [in Russian language]
10. Akhmadeev A. A., Bogoslov E. A., Danilaev M. P. et. al. (2020). Influence of the thickness of a polymer shell applied to surfaces of submicron filler particles on the properties of polymer compositions. Mechanics of Composite Materials, Vol. 56, pp. 241–248. DOI: 10.1007/s11029-020-09876-4
11. Danilaev M. P., Drobyshev S. V., Klabukov M. A. et. al. (2021). Formation of a polymer shell of a given thickness on surfaces of submicronic particles. Nanobiotechnology Reports, Vol. 16, pp. 162–166. DOI: 10.1134/S263516762102004X
12. Havriliak S., Negami S. (1966). A complex plane analysis of α‐dispersions in some polymer systems. Journal of Polymer Science. Part C. Polymer Symposia, Vol. 14 (1), pp. 99 – 117. DOI: 10.1002/polc.5070140111
13. Pearson J. R. (1985). Mechanics of polymer processing. Springer Science & Business Media.
14. Ponomareva A. M., Ravdel' A. A. (Eds.), Baron N. M., Timofeeva Z. N. (2003). Brief reference book of physical and chemical quantities. 10th ed. Saint Petersburg: Ivan Fedorov. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.07.pp.044-050

and fill out the  form  

 

 
Search
Rambler's Top100 Яндекс цитирования