Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 01 | 2025
2023, 09 September

DOI: 10.14489/td.2023.09.pp.042-048

Shilin A. N., Mac B. V., Koptelova I. A.
ANALYSIS OF THE METHODOLOGY FOR USING THE INTEGRAL RADIATION COEFFICIENT IN ENERGY PYROMETERS
(pp. 42-48)

Abstract. The principle of operation of energy pyrometers for measuring the temperature of heated products is based on measuring the radiation flux from a heated product, which depends not only on the temperature of the object, but also on the emissivity of the surface of the material. The main error of such pyrometers is the methodological component, which is due to the variability of the radiation coefficient of the surface of the product material. In practice, the radiation coefficient of the surface of the material of the product is determined approximately using reference books. It should be noted that the radiation coefficient theoretically depends on the wavelength and temperature, and reference books give dependences on only one parameter, and in different reference books for the same material, the dependences differ. In addition, when using spectral dependences, it is necessary to take into account the spectral characteristics of all elements of the optoelectronic path. So, the use of this method limits the accuracy of temperature measurement. For a more accurate determination of the radiation coefficient, a preliminary study is required, which requires more sophisticated equipment than a pyrometer. In the article, an analysis was made of the errors in determining the temperature using the average value of the radiation coefficient. To improve the accuracy of measuring the temperature of an object, a device was developed that implements the method of exemplary signals and uses the average value of the radiation coefficient. The developed device preliminarily determines the dependence of the average value of the emissivity on temperature, and when working, it determines the temperature of the part based on the results of measurements with a pyrometer and the dependence.

Keywords: radiation from heated bodies, radiation coefficient, pyrometry, optocal-electronic devices, errors of optocal-electronic devices.

A. N. Shilin, B.V. Mac, I. A. Koptelova (Volgograd State Technical University, Volgograd, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Kriksunov L. Z. (1978). Handbook of fundamentals of infrared technology. Moscow: Sovetskoe radio. [in Russian language]
2. Sheyndlin A. E. (Ed.) (1974). Emissive Properties of Solid Materials: a handbook. Moscow: Energiya. [in Russian language]
3. Grigor'ev I. S., Meylihov E. Z. (Eds.), Babichev A. P., Babushkina N. A., Bratkovskiy A. M. et al. (1991). Physical quantities: a handbook. Moscow: Energoatomizdat. [in Russian language]
4. Lykov A.V. (1978). Heat and mass transfer: a handbook. Moscow: Energiya. [in Russian language]
5. Frunze A. (2009). Spectral ratio pyrometers: advantages, disadvantages and ways to eliminate them. Fotonika, (4), 32 – 37. [in Russian language]
6. Magunov A. N. (2012). Spectral pyrometry. Moscow: Fizmatlit. [in Russian language]
7. Poskachey A. A., Charihov L. A. (1978). Pyrometry of objects with varying emissivity. Moscow: Metallurgiya. [in Russian language]
8. Poskachey A. A., Chubarov E. P. (1988). Optoelectronic temperature measurement systems. Moscow: Energoatomizdat. [in Russian language]
9. Gossorg Zh. (1988). Infrared thermography. Fundamentals, technique, application. Moscow: Mir. [in Russian language]
10. Ishanin G. G. (1986). Radiation receivers for optical and optoelectronic devices. Leningrad: Mashinostroenie. [in Russian language]
11. Garelina S. A., Latyshenko K. P., Frunze A. V. (2017). Review and analysis of pyrometer errors. Collection of articles based on materials of the VII All-Russian Scientific and Practical Conference, 74 – 77. Zheleznogorsk. [in Russian language]
12. Rusin S. P. (2021). Determining the True Temperature of Opaque Materials from the Spectrum of Thermal Radiation: Computer Simulation. Moscow: LENAND. [in Russian language]
13. Zhang Z. M., Tsai B. K., Mashin G. (Eds.) (2009). Overview of Radiation Thermometry. Radiometric temperature measurements. I. Fundamentals. Experimental Methods in the Physical Sciences, 42. Amsterdam: Elsevier.
14. Zhang Z. M., Tsai B. K., Mashin G. (Eds.), Hollandt J., Hartmann J., Struß O., Gartner R. (2010). Industrial Applicationsof Radiation Thermometry. Radiometric temperature measurements. II. Applications. Experimental Methods in the Physical Sciences, 43. Amsterdam: Elsevier.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.09.pp.042-048

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования