Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
26 | 12 | 2024
2023, 10 October

DOI: 10.14489/td.2023.10.pp.022-027

Grigoriev S. N., Kozochkin M. P., Volosova M. A., Okunkova A. A.
DIAGNOSTICS OF INTERELECTRODE GAP’S CONDITION USING VIBROACOUSTIC EMISSION
(pp. 22-27)

Abstract. This work is devoted to the study of the interelectrode gap’s condition during wire electrical discharge machining. The experiments were carried out on workpieces made of chromium-nickel anti-corrosion steel 12Kh18N10T and duralumin D16 with a brass tool CuZn35 with a diameter of 0.25 mm in deionized water. The developed diagnostic tool based on vibroacoustic emission recorded oscillations with a frequency of 4 … 8 kHz accompanying the processing.

Keywords: vibroacoustic emission, interelectrode gap, roughness, electrical erosion, tool electrode.

S. N. Grigoriev, M. P. Kozochkin, M. A. Volosova, A. A. Okunkova (Moscow State University of Technology “Stankin”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Grigor'ev S. N., Okun'kova A. A., Volosova M. A. (2020). Promising methods of electrical discharge processing of ceramics. Moscow: MGTU «Stankin». [in Russian language]
2. Popov A. Yu., Prokof'ev V. A. (2023). Improving the accuracy of deep hole machining using electrical discharge machining using a rotating tubular electrode. Omskiy nauchniy vestnik, 185(1), 5 – 9. [in Russian language]
3. Boyko A. F., Podpryatov D. V. (2020). Comparative analysis of two methods of electrical discharge piercing of blind microholes. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shuhova, (6), 136 – 144. [in Russian language]
4. Shlykov E. S., Ablyaz T. R. (2020). Comprehensive analysis of the electrical discharge machining process of steel-copper bimetallic material. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty), 22(1), 16 – 26. [in Russian language]
5. Okun'kova A. A. (2010). Design and production of moldforming parts using integrated CAD/CAM systems (using the example of using Pro/Engineer). Vestnik MGTU «Stankin», 11(3), 56 – 60. [in Russian language]
6. Artes A. E., Sosyonushkin E. N., Tret'yuhin V. V. et al. (2013). New resource- and energy-saving technologies for manufacturing parts by pressure processing. Vestnik mashinostroeniya, (5), 72 – 74. [in Russian language]
7. Oglezneva S. A., Ogleznev N. D. (2021). Manufacturing technology and properties of electrode tools made of composite materials of the copper-graphite/carbon nanotube system for electrical discharge piercing of steel sheets. Konstruktsii iz kompozitsionnyh materialov, 162(2), 9 – 13. [in Russian language]
8. Kirillov O. N., Kuts V. V., Shendrikova O. O. (2022). Combined electrode-brush treatment of product surfaces with variable allowance. Voronezhskiy nauchno-tekhnicheskiy vestnik, 4, 42(4), 4 – 21. [in Russian language]
9. Izmaylov V. V., Gusev A. F., Novoselova M. V (2022). A set of equipment for testing electrofriction contact connections. Part 3. Mechanics and physics of processes on the surface and in contact of solids, parts of technological and power equipment, 15, 45 – 52. [in Russian language]
10. Poletaev V. A., Orlov A. A. (2019). Selection of strategies for electrical discharge machining of perforations in turbine blades of gas turbine engines. Naukoemkie tekhnologii v mashinostroenii, 92(2), 3 – 7. [in Russian language]
11. Okun'kova A. A. (2011). Complex for monitoring geometric parameters of injection molding machine products: development of a block diagram. Vestnik MGTU «Stankin», 14(2), 75 – 79. [in Russian language]
12. Alvarez E., Gutierrez K., Torresil'yas S. M. R. et al. (2014). Properties of nanocomposite materials based on oxide ceramics obtained by the spark plasma method. Perspektivnye materialy, (4), 43 – 50. [in Russian language]
13. Ivanov V. A., Ablyaz T. R. (2014). Electrical discharge machining of complex profile parts assembled into a single package. Sovremennye problemy nauki i obrazovaniya, (2). [in Russian language]
14. Grigor'ev S. N., Teleshevskiy V. I. (2011). Problems of measurement in technological processes of shaping. Izmeritel'naya tekhnika, (7), 3 – 7. [in Russian language]
15. Zavalov Yu. N., Dubrov A. V., Mirzade F. H. et al. (2017). Using optical diagnostics to determine the temperature field of the melt during layer-by-layer laser melting of metal powder. Pis'ma v ZhTF, 43(13), 73 – 80. [in Russian language]
16. Grigor'ev S. N., Kozochkin M. P., Okun'kova A. A. (2015). Study of prospects for monitoring electrical erosion processes based on changes in vibration parameters. Izvestiya vuzov. Aviatsionnaya tekhnika, (4), 117 – 122. [in Russian language]
17. Rybakov A. V., Okun'kova A. A. (2009). Solving problems of technological preparation for the production of parts produced by wire EDM (using the example of mold parts in Pro/Engineer). Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 21(1), 20 – 28. [in Russian language]
18. Okun'kova A. A. (2008). Automation of technological preparation for the production of mold parts using CNC equipment using electrical discharge wire machining. Vestnik MGTU «Stankin», (4), 76 – 81. [in Russian language]
19. Grigor'ev S. N., Volosova M. A., Okun'kova A. A. et al. (2020). Nanomodification of near-surface layers during electrical discharge processing of oxide nanocomposites. Vestnik MGTU «Stankin», 55(4), 11 – 22. [in Russian language]
20. Kozochkin M. P., Grigor'ev S. N., Okun'kova A. A., Porvatov A. N. (2015). Monitoring of electrical discharge machining processes based on acoustic emission parameters. STIN, (8), 28 – 33. [in Russian language]
21. Skryabin V. A. (2020). Operating parameters and main technological indicators of electrical discharge machining. Tekhnologiya metallov, (1), 9 – 14. [in Russian language]
22. Okun'kova A. A. (2010). Features of programming CNC wire EDM equipment. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 68(2), 3 – 10. [in Russian language]
23. Melnik Y. A., Kozochkin M. P., Porvatov A. N., Okunkova A. A. (2018). On adaptive control for electrical discharge machining using vibroacoustic emission. Technologies, 6.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.10.pp.022-027

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования