Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
26 | 12 | 2024
2023, 10 October

DOI: 10.14489/td.2023.10.pp.028-037

Shlyakhtenkov S. P., Popkov A. A., Vyplaven V. S., Gulyev M. A., Bobrov A. L., Bekher S. A.
DIAGNOSTICS OF THE PRESS POWER FRAME WITH THREADED CONNECTIONS OF LOAD-BEARING ELEMENTS BY STRAIN GAUGE METHOD
(pp. 28-37)

Abstract. The distribution of tightening forces between several threaded connections of power elements of machines and mechanisms directly affects the strength and reliability of the entire structure. When operating heavily loaded mechanisms with threaded connections in excess of the deadlines set in the technical documentation, the likelihood of loosening the tightening increases. This negatively affects the distribution of stresses in the power frame and, under unfavorable conditions, can lead to an increase in the level of mechanical stresses to critical values. The purpose of the work is a strain gauge method for monitoring the power frame of a hydraulic stamping press with threaded connections to assess the operability of the structure and conclude on the feasibility of repairs. Using strain gauges and finite element modeling methods, the regularities of the distribution of deformations in the material of columns and press racks with a maximum workload of 10 thousand tons are established. It is shown that in the working cycle, deformations are determined by the force and moment of force associated with the eccentricity of the application of the working force. Criteria for assessing the quality of threaded connections based on the relative difference and simultaneity of changes in mechanical stresses in the material of columns and press racks have been developed. The immobility of the connections of the power frame of the press during operation with maximum effort is ensured by the uniformity of the stress distribution on the racks and columns, taking into account the error of the results of the strain gauge method of 5%. The influence of the sliding elements of the movable elements of the press on the experimentally established patterns of stress distribution is substantiated by the method of finite element modeling.

Keywords: technical diagnostics, threaded connections, power frame, load-bearing structure, press, strain gauge, mechanical stresses.

S. P. Shlyakhtenkov, A. A. Popkov, V. S. Vyplaven, M. A. Gulyev, A. L. Bobrov, S. A. Bekher (Siberian Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Skryabin V. A. (2019). Technology for repairing parts of crane movement mechanisms and control drives. Remont. Vosstanovlenie. Modernizatsiya, (7), 8 – 16. [in Russian language]
2. Avgustov G. I., Puchkov M. V., Komlev S. I. (2022). Study of the load-bearing capacity of connections on high-strength bolts of prefabricated spans of railway bridges. Spetsial'naya tekhnika i tekhnologii transporta, 14, 55 – 59. [in Russian language]
3. Dubovik E. A. (2018). Technology for disassembling and assembling parts with threaded connections. Sborka v mashinostroenii, priborostroenii, (4), 163 – 167. [in Russian language]
4. Syromyatnikov V. S., Huan Markos G. M., Laura Angelika S. K., Migel' Gersaun O. R. (2014). Over-tightening and under-tightening of bolted connections. Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie, 653(8), 28 – 34. [in Russian language]
5. Sotnikov A. L., Shcherbina S. V. (2018). Estimation of the probability of failure-free operation of a threaded connection when assembling it using various methods. Sbornik nauchnyh trudov Donbasskogo gosudarstvennogo tekhnicheskogo universiteta, 55(12), 78 – 83. [in Russian language]
6. Vodolazskaya N. V. (2023). Expanding the loading range of elements of a technological assembly system. Sborka v mashinostroenii, priborostroenii, (1), 7 – 11. [in Russian language]
7. Sotnikov A. L., Shcherbina S. V. (2017). Assembly of large-sized threaded connections by applying axial forces. Sbornik nauchnyh trudov Donbasskogo gosudarstvennogo tekhnicheskogo universiteta, 48(5), 167 – 174. [in Russian language]
8. Zenkov S. G. (2019). Performance of threaded and pin connections under conditions of intense vibration loading. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 389(3), 173 – 179. [in Russian language]
9. Pesin M. V., Makarov V. F., Halturin O. A. (2022). Calculation and modeling of rational tightening torque when assembling drill pipes. Ekspozitsiya Neft' Gaz, 92(7), 50 – 54. [in Russian language]
10. Shuvaev V. G., Krylova I. N. (2020). Ensuring high-quality tightening of threaded connections according to dynamic criteria. Sborka v mashinostroenii, priborostroenii, (8), 352 – 354. [in Russian language]
11. Kaptelin S. Yu. (2019). Tension control of high-strength bolts when installing friction joints. Put' i putevoe hozyaystvo, (2), 33 – 37. [in Russian language]
12. Antropov B. S., Kubeev E. I., Pogodina T. V. (2019). Ensuring the reliability of threaded connections on modern automotive and tractor equipment. Traktory i sel'hozmashiny, (5), 61 – 66. [in Russian language]
13. Aksenov S. P., Netsvet V. A., Zubko A. I., Uvarov V. G. (2019). Study of the mechanism of destabilization of the dynamic characteristics of the gas turbine engine rotor due to a violation of the tightness of the joints of critical threaded connections with the development of measures to improve the quality of the finished product. Nasosy. Turbiny. Sistemy, 32(3), 55 – 64. [in Russian language]
14. Ivanov A. S., Kuts M. S., Nagibina V. O., Popov M. A. (2019). Study of the rigidity of tension shafts. Vestnik mashinostroeniya, (2), 16 – 20. [in Russian language]
15. Tkachev M. Yu. (2020). Rationale for the use of self-tightening nuts in heavily loaded components of machines and mechanisms. Vesti avtomobil'nodorozhnogo instituta, 35(4), 24 – 31. [in Russian language]
16. Muravev V. V., Muraveva O. V., Volkova L. V. (2019). Measurement of Residual Stresses of Locomotive Wheel Treads during the Manufacturing Technological Cycle. Management Systems in Production Engineering, 27(4), 236 – 241.
17. Muravev V. V., Lenkov S. V., Tapkov K. A. (2019). In-Production Nondestructive Testing of Internal Stresses in Rails Using Acoustoelasticity Method. Russian Journal of Nondestructive Testing, 55(1), 8 – 14.
18. Muravev V. V., Volkova L. V., Petrov S. Y. (2015). The distribution of residual stresses in railroad wheels after electrocontact strengthening of the rolling surface. Russian Journal of Nondestructive Testing, 51(10), 652 – 660.
19. Sereznov A. N., Stepanova L. N., Laznenko A. S. (2020). Static Tests of Wing Box of Composite Aircraft Wing Using Acoustic Emission and Strain Gaging. Russian Journal of Nondestructive Testing, 56(8), 611 – 619.
20. Sidorov V. A. (2019). Sequence of diagnostic assessment of the technical condition of gear stands of rolling mills. Stal', (9), 49 – 53. [in Russian language]
21. Osipov K. N., Golikova V. V. (2019). Assurance of Reliability in Making Decisions on the Assembly Quality of Machine-Building Products. Journal of Machinery Manufacture and Reliability, 48(4), 372 – 377.
22. Rapatskiy Yu. L., Kopp V. Ya., Lipka V. M. (2020). Research of mechanical assembly production using methods of expert assessments and analysis. Avtomatizatsiya i izmereniya v mashinopriborostroenii, 10(2), 51 – 67. [in Russian language]
23. Mahutov N. A., Gadenin M. M. (2017). Study of the service life of thermonuclear power plant elements taking into account tribo-fatigue parameters. Mekhanika mashin, mekhanizmov i materialov, 40(3), 33 – 40. [in Russian language]
24. Tukaeva R. B., Prohorov A. A., Miniahmetov O. Yu. (2018). Magnetic control method for assessing the uniformity of tightening of bolts of flange connections. Mashinostroenie: setevoy elektronniy nauchniy zhurnal, 6(2), 26 – 31. [in Russian language]
25. Stepanova L. N., Petrova E. S., Chernova V. V. (2018). Strength Tests of a CFRP Spar Using Methods of Acoustic Emission and Tensometry. Russian Journal of Nondestructive Testing, 54(4), 243 – 248.
26. Stepanova L. N., Kabanov S. I., Lebedev E. Yu. (2006). High-speed microprocessor-based strain gauge system for dynamic testing of structures. Kontrol'. Diagnostika, (7), 6 – 14. [in Russian language]
27. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. (2014). Strain gauging in transport engineering. Novosibirsk: Nauka. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.10.pp.028-037

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования