Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2024, 03 March

DOI: 10.14489/td.2024.03.pp.023-034

Kovshov E. E., Kuvshinnikov V. S.
TESTING OBJECT IMAGE GENERATION ON FLEXIBLE DETECTOR IN THE INDUSTRIAL RADIOGRAPHY SIMULATOR ENVIRONMENT
(pp. 23-34)

Abstract. Creation of a digital twin of a flexible detector is considered, models and algorithms for its implementation in a virtual reality environment are proposed, the main results of computational and laboratory experiments as well as the obtained radiographic images are presented. It is noted that information technologies are widely and actively used for the formation of professional skills among industrial personnel, as well as in the training of specialists who make responsible decisions when working with complex technical systems, hazardous objects and in smart manufacturing. Among the digital technologies used, digital simulators based on virtual reality stand out, expanding the range of educational opportunities and improving the quality of material assimilation in various fields of knowledge due to a deeper immersion in the educational process. The main task in the application of virtual reality technologies in the framework of training programs for qualified technical specialists is the development of their professional skills, the formation of stable patterns of behavior that ensure strict compliance with the rules and requirements of industrial safety.

Keywords: virtual reality, radiography simulator, computer technologies, flexible detector, mathematical modeling, nondestructive testing.

E. E. Kovshov, V. S. Kuvshinnikov (Joint-Stock Company “Research and Development Institute of Construction Technology – Atomstroy”, Moscow, Russia) Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Radiography Demand Boosts Global X-Ray Inspection Systems Market. Canadian Manufacturing. Retrieved from https://www.canadianmanufacturing.com/manufacturing/radiography-demand-boosts-global-x-ray-inspection-systems-market-280085 (Accessed: 08.09.2023).
2. Non-destructive testing. Welded connections. Radiographic method. Technical requirements. (1983). Ru Standard No. GOST 7512–82. Moscow: Izdatel'stvo standartov. [in Russian language]
3. Radiographic inspection: see through the object. Retrieved from https://defektoskopist.ru/osnovi-nk/radiografi cheskij-kontrol.31 (Accessed: 08.09.2023). [in Russian language]
4. Conformity assessment system in the field of nuclear energy use. Conformity assessment in the form of control. Unified methods. Radiographic control. Technical requirements. (2018). Ru Standard No. GOST R 50.05.07–2018. Moscow: Standartinform. [in Russian language]
5. Bagaev K. A. (2023). Flexible detectors for digital radiography. Application experience. Gas transmission systems: present and future (GTS‒2023). Abstracts of the IX International Scientific and Technical Conference. Kazan': NII prirodnyh gazov i gazovyh tekhnologiy – Gazprom VNIIGAZ. EDN OHBPNX. [in Russian language]
6. Flexible digital detector "Novoscan". TWN Technology. Retrieved from https://twn-technology.ru/catalog/rentgenovskiy_kontrol/tsifrovaya_radiografiya/gibkie_tsifro-vye_detektory_novoskan (Accessed: 08.09.2023). [in Russian language]
7. Digital radiography complex “KARAT RTS 1036” with a flexible detector. Computed radiography Newcom-NDT. Retrieved from https://newcom-ndt.ru/ploskopanelnye-detektory/rentgentelevizionnaya-sistema-kapat-ptc/karat-rts1036-s-gibkim-detektorom (Accessed: 08.09.2023). [in Russian language]
8. Non-destructive testing of welded joints. Radiographic control. Part 1. Methods of X-ray and gammagraphic control using film. Technical requirements. (2018). International Standard No. GOST ISO 17636-1‒2017. Moscow: Standartinform. [in Russian language]
9. Non-destructive testing of welded joints. Radiographic control. Part 2. Methods of X-ray and gammagraphic control using digital detectors. Technical requirements. (2018). International Standard No. GOST ISO 17636-2‒2017. Moscow: Standartinform. [in Russian language]
10. Shablov S. V., Kosarina E. I., Mihaylova N. A., Demidov A. A. (2023). Physical foundations and practice of radiation non-destructive testing. Moscow: ID «Spektr». [in Russian language]
11. Practical aspects of quality control of pipeline welded joints using digital radiography using flexible digital detectors. (2023). Defectoscopy / NDT St. Petersburg": 22nd International specialized exhibition of instruments and equipment for industrial non-destructive testing. Saint Petersburg. Retrieved from https://www.ndt-defectoscopy.ru/ru-RU/Documents/Презентации-спикеров-2023/1-Пром-тех-НК-Титов-Д-Применение-гибких-цифровых-де.aspx (Accessed: 08.09.2023). [in Russian language]
12. Basiricò L. Ciavatti A., Fratelli I. et al. (2020). Medical Applications of Tissue-Equivalent, Organic-Based Flexible Direct X-Ray Detectors. Frontiers in Physics, 8.
13. Han B., Kim K., Park M., Lee Y. et al. (2022). Characterization of Flexible Amorphous Silicon Thin-Film Transistor-Based Detectors with Positive-Intrinsic-Negative Diode in Radiography. Diagnostics, 12(9).
14. Li Z., Chang Sh., Zhang H. et al. (2021). Flexible Lead-Free X-Ray Detector from Metal – Organic Frame-works. Nano Letters, Vol. 21 16, 6983 ‒ 6989.
15. Liu J., Shabbir B., Wang Ch. et al. (2019). Flexible, Printable Soft‐X‐Ray Detectors Based on All‐Inorganic Perovskite Quantum Dots. Advanced Materials, Vol. 31 30.
16. Odedra D., Narayanasamy S., Sabongui S. et al. (2022). Dual Energy CT Physics ‒ a Primer for the Emergency Radiologist. Frontiers in Radiology, 2.
17. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2023). The use of digital twins models while a radiographic image formation in a virtual reality environment. Kontrol'. Diagnostika, Vol. 26 303(9), 4 ‒ 15. [in Russian language] DOI: 10.14489/td.2023.09.pp.004-015. EDN QMMXCC.
18. Halladay K. (2019). Practical Shader Development: Vertex and Fragment Shaders for Game Developers. Bristol: Apress.
19. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2021). Radiographic image of a non-destructive testing object generation in a virtual reality environment. Kontrol'. Diagnostika, Vol. 24 278(8), 14 ‒ 22. [in Russian language] DOI: 10.14489/td.2021.08.pp.014-022. EDN ITZZCU.
20. Kovshov E. E., Kuvshinnikov V. S. (2023). Testing object’s material physical properties simulation in the industrial radiography VR environment. Kontrol'. Diagnostika, Vol. 26 296(2), 4 ‒ 12. [in Russian language] DOI: 10.14489/td.2023.02.pp.004-012. EDN DQOJIT.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.03.pp.023-034

and fill out the  form  

 

 

 

 
Search
Rambler's Top100 Яндекс цитирования