Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
22 | 12 | 2024
2024, 11 November

DOI: 10.14489/td.2024.11.pp.004-013

Vyplaven V. S., Bekher S. A.
THE USE OF INVERSE PROBLEM NUMBERICAL SOLUTION TO IMPROVE THE BALLAST LAYER USING CONTROL BY LIGHT WEIGHT DEFLECTOMETER
(pp. 4-13)

Abstract. The article describes the light weight deflectometer operation principle, which used to access the elastic characteristics of soil under impact load. The study proposes the use of numerical solutions to the inverse problem to investigate the influence of installation parameters and foundations on measurement results. The solution is based on optimizing the parameters of the developed mathematical model. The criterion for minimization was the mean square error between the measured values of acceleration, velocity, and displacement and the calculated values obtained from the mathematical model. Due to the presence of multiple local minima in the optimized function, a genetic algorithm was used as the solver Tests were conducted to measure the elasticity coefficients on bases with different stiffness and deformation modulus on gravel ballast. The test results confirm the applicability of using a numerical inverse problem-solving algorithm to find unknown system parameters based on experimental data.

Keywords: ballast, railway track, light weight deflectometer, deformation modulus, mechanical tests on soils, optimization problem, mathematical model, inverse problem.

V. S. Vyplaven, S. A. Bekher (Siberian Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Zheleznyak V. N., Martynenko L. V., Panfilova A. O. (2020). Features of the interaction of components and parts in the “car-track” system. Molodaya nauka Sibiri, 8(2), 17 ‒ 20. [in Russian language]
2. Skutin A. I., Myl'nikov M. M. (2020). Development of a model for the occurrence of shear forces in the ballast layer under the influence of external loads. Sovremennye tekhnologii. Sistemniy analiz. Modelirovanie, 68(4), 220 ‒ 230. [in Russian language]
3. Sysyn M., Gerber U., Kovalchuk V., Nabochenko O. (2018). The Complex Phenomenological Model for Prediction of Inhomogeneous Deformations of Railway Ballast Layer After Tamping Works. Archives of Transport, 47(3), 91 ‒ 107.
4. Kovalenko N. I., Kovalenko N. A. (2020). Features of track straightening work using single track machines. Nauka i tekhnologii zheleznyh dorog, Vol. 4 14(2), 94 ‒ 100. [in Russian language]
5. Offenbacher S., Bernhard A., Barbir O. et al. (2021). Evaluating the Applicability of Multi-Sensor Equipped Tamping Machines for Ballast Condition Monitoring. Measurement, 172.
6. Przybyłowicz M., Sysyn M., Parneta B. et al. (2020). Experimental and Theoretical Evaluation of Side Tamping Method for Ballasted Railway Track Maintenance. Transport Problems, 15(3).
7. Kuttah D. (2021). Determining the Resilient Modulus of Sandy Subgrade Using Cyclic Light Weight Deflectometer Test. Transportation Geotechnics, 27.
8. Yongjin C., Donghyun A., Yunje L. et al. (2020). Compaction Quality Monitoring of Open-Graded Aggregates by Light Weight Deflectometer and Soil Stiffness Gauge. Sustainability, (12).
9. Kuttah D. (2023). Assessing the Interactions Among Factors Affecting the Light-Weight Deflectometer Measurements. Bulletin of Engineering Geology and the Environment, 82.
10. Vlasov K. V., Bobrov A. L. (2024). Influence of heterogeneity of physical properties of the test object on the sensitivity of the eddy current method. Vestnik IzhGTU im. M. T. Kalashnikova, 27(1), 55 ‒ 62. [in Russian language]. DOI: 10.22213/2413-1172-2024-1-55-62
11. Belyh V. V., Murav'ev V. V., Stepanov V. A. (2020). Using the information entropy of steel structure to determine the quality and service life of its functional properties. Vestnik IzhGTU im. M. T. Kalashnikova, 23(3), 15 ‒ 24. [in Russian language]. DOI: 10.22213/2413-1172-2020-3-15-24
12. Vyplaven' V. S., Bekher S. A. (2023). Elasticlinear model of dynamic control of the rigidity of the ballast layer of a railway track. Intellektual'nye sistemy v proizvodstve, 21(1), 4 ‒ 13. [in Russian language]
13. Evdokimov Yu. K., Fadeeva L. Yu. (2023). Method and algorithm for radio frequency probing of inhomogeneous electrically conductive structures. Vestnik IzhGTU im. M.T. Kalashnikova, 26(2), 94 ‒ 102. [in Russian language]. DOI: 10.22213/2413-1172-2023-2-94-102
14. Pushkarev I. A. (2022). Block diagram of vibration protection means for building structures with moving loads. Vestnik IzhGTU im. M. T. Kalashnikova, 25(4), 27 ‒ 36. [in Russian language]. DOI: 10.22213/2413-1172-2022-4-27-36
15. Akey E., Jones M., Ho C. et al. (2022). Measuring Railroad Ballast Modulus of Elasticity Using Light Weight Deflectometer. Advances in Transportation Geotechnics IV. Lecture Notes in Civil Engineering, 165.
16. Prajwol T., Soheil N. (2019). Permanent Deformation and Stiffness of Fouled Ballast Based on Static and Impact Load Tests. Conference: Geo-Structural Aspects of Pavements, Railways, and Airfields. At: Colorado Springs, Colorado.
17. Kryuchkov M. V. (2014). Comparative analysis of some algorithms for solving a multidimensional constrained optimization problem. Vestnik IzhGTU im. M. T. Kalashnikova, 62(2), 153 ‒ 155. [in Russian language]
18. Zaginaylo M. V., Fathi V. A. (2020). Genetic algorithm as an effective tool for evolutionary algorithms. Innovatsii. Nauka. Obrazovanie, 22, 513 ‒ 518. [in Russian language]
19. Ryadchikov I. V., Gusev A. A., Sechenev S. I., Nikul'chev E. V. (2019). Genetic algorithm for searching parameters of PID controllers of a walking robot stabilization system. Trudy NGTU im. R. E. Alekseeva, 124(1), 52 ‒ 60. [in Russian language]
20. Ushakov P. A., Maksimov K. O. (2012). Development of a genetic algorithm for the synthesis of designs of fractal elements based on a resistive-capacitive medium with a layer structure of the form R‒C‒NR. Vestnik IzhGTU im. M. T. Kalashnikova, 55(3), 104 ‒ 108. [in Russian language]
21. Xiaorui Z., Frédéric O., Oeser M. (2021). Pavement Moduli Back-Calculation Using Artificial Neural Network and Genetic Algorithms. Construction and Building Materials, 287.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.11.pp.004-013

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования