DOI: 10.14489/td.2025.05.pp.016-024
Semenov V. V., Smotrova S. A., Budadin O. N., Fedotov M. Yu., Kozelskaya S. O., Borisenko V. V., Bogachev A. S. REVIEW OF THE RESULTS OF THE RESEARCH OF A PROTOTYPE OF AN AUTOMATED IMMERSION SYSTEM FOR NON-DESTRUCTIVE TESTING OF AVIATION DISKS (pp. 16-24)
Abstract. This paper presents an overview of the results of experimental studies of the prototype of an automated system for immersion ultrasonic testing of large-sized metal products, in particular, aircraft disks. The main technical characteristics, composition, software features, and the main capabilities of the proposed automated testing system are described. It is shown that the automated testing system allows increasing productivity and ensuring a specified level of quality and reliability of testing results. The prototype as part of hardware and software for automated testing is a universal testing tool for a wide range of metal structures and can be adapted to specific types of materials, products, and their actual operating conditions.
Keywords: non-destructive testing, automation, ultrasonic non-destructive testing, aircraft disc, defect, prototype of an automated testing system.
V. V. Semenov, S. A. Smotrova, O. N. Budadin (SSC FSUE TsNIIchermet named after I. P. Bardin, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. Yu. Fedotov (SSC FSUE TsNIIchermet named after I. P. Bardin, Moscow, Russia, Russian Engineering Academy, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozelskaya (JSC “Central Scientific Research Institute of Special Mechanical Engineering” (JSC “TSNIISM”), Khotkovo, Moscow region, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Borisenko, A. S. Bogachev (NPC Kropus-PO LLC, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Klyuev V. V (Ed.), Ermolov I. N., Lange Yu. V., Klyuev V. V. (2006). Non-destructive testing: Handbook. In 8 volumes. Vol. 3. Ultrasonic testing. 2nd ed. Moscow: Mashinostroenie. [in Russian language] 2. Decree of the President of the Russian Federation No. 198. Retrieved from http://kremlin.ru/acts/bank/43022 (Accessed: 13.03.2024). [in Russian language] 3. Slavin A. V., Dalin M. A., Dikov I. A. Et al. (2021). Modern trends in the development of acoustic methods of non-destructive testing in the aviation industry: review. Trudy VIAM, 106(12), 96 ‒ 106. [in Russian language] DOI: 10.18577/2307-6046-2021-0-12-96-106 4. Yanochkin V. A., Brezhneva A. V. (2018). Acoustic contact during ultrasonic testing of products. Aktual'nye problemy aviatsii i kosmonavtiki, 14(1), 479 ‒ 480. [in Russian language] 5. P'yankov V. A., Kruglov K. P. (2012). Review: status and ways of improving ultrasonic testing of disk blanks from granulated materials. V mire nerazrushayuschego kontrolya, 55(1), 39 ‒ 44. [in Russian language] 6. Karabutov A. A. (2013). CLUE of Aerospace Materials and Parts. Retrieved from https://www.ndt.net/article/ndtp2013/papers/slides3.pdf 7. Kablov E. N., Ospennikova O. G., Kudinov I. I. et al. (2021). Assessment of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using flaw detection liquids of domestic and foreign production. Defektoskopiya, (1), 64 ‒ 71. [in Russian language] DOI: 10.31857/S0130308221010073 8. Kretov E. F. (2007). Ultrasonic flaw detection. Moscow: SVEN. [in Russian language] 9. Ermolov I. N., Ryzhov-Nikonov V. I. (2006). Theory of operation of piezoelectric detectors of ultrasonic flaw detectors. Defektoskopiya, (4), 35 – 44. [in Russian language] 10. Ermolov I. N., Scherbinskiy V. G. (2004). Measuring the size of defects using ultrasonic flaw detection. Defektoskopiya, (6), 24 – 37. [in Russian language] 11. Ultrasonic testing methods. (2009). General requirements. Standard No. GOST 12503‒75. Moscow: Standartinform. [in Russian language] 12. ГОСТ Rolled sheet metal. Ultrasonic testing methods. (1988). Standard No. GOST 22727‒88. Moscow: Izdatel'stvo standartov. [in Russian language] 13. Non-destructive testing. Forgings from ferrous and non-ferrous metals. Ultrasonic flaw detection methods. (2010). Standard No. GOST 24507‒80. Moscow: Standartinform. [in Russian language] 14. Krautkremer Y., Krautkremer G. (1991). Ultrasonic testing of materials: handbook. Moscow: Metallurgiya. [in Russian language] 15. Metodological recommendations on the procedure for conducting ultrasonic testing of metal structures of technical devices, buildings and structures. (2015). Moscow: OAO NTTS po bezopasnosti v promyshlennosti. [in Russian language] 16. Nikolenko S. D., Sazonova S. A., Akamsina N. V. (2020). Automation of the quality control process of welded joints. Modelirovanie sistem i protsessov, 13(3), 76 ‒ 85. [in Russian language] DOI: 10.12737/2219-0767-2020-13-3-76-85
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2025.05.pp.016-024
and fill out the form
|