1. Kablov E. N. (2010). The sixth technological structure. Nauka i zhizn', (4), pp. 2-7.
2. Vasil'ev S. A., Medvedkov I. O., Korolev I. G. et al. (2005). Fiber gratings of refraction index and their applications. Kvantovaia elektronika. 35(12), pp. 1085-1103.
3. Takeda N. (2008). Fiber optic sensorbased SHM technologies for aerospace Applications in Japan. Proc. SPIE 6933 Smart Sensor Phenomena, Technology, Networks, and Systems. doi: http://dx.doi.org/10.1117/12.776838
4. Guemes J. A., Menendez J. M. (2002). Response of Bragg grating fiberoptic sensors when embedded in composite laminates compos. Sci. Technol. 62, pp. 959-966.
5. Müller M. S., Buck T. C., El-Khozondar H. J., Koch A. W. (2009). Shear strain influence on fiber Bragg grating measurement systems. Journal of Lightwave Technology. 27(23), pp. 5223-5229. doi: 10.1109/JLT.2009.2028244
6. Lawrence C. M., Nelson D. V., Udd E., Bennett T. (1999). A fiber optic sensor for transverse strain measurement. Experimental Mechanics. 39(3), pp. 202-209. doi: 10.1007/BF02323553
7. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. (2013). Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains. Smart Mater. Struct. 22, p. 9. doi: 10.1088/0964-1726/22/7/075002
8. Kollar L. P., Van Steenkiste R. J. (1998). Calculation of the stresses and strains in embedded fiber optic sensors. J. Compos. Mater. 32, pp. 1647-1679.
9. Bertholds A., Dandliker R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibers. J. Lightwave Technol, 6, pp. 17-20.
10. Song M. H., Lee S. B., Choi S. S., Lee B. H. (1997). Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube. Opt. Fiber Tech. (3), pp. 194-196.
11. Mulle M., Zitoune R., Collombet F. et al. (2007). Thermal expansion of carbonepoxy laminates measured with embedded FBGS-comparison with other experimental techniques and numerical simulation. Compos. A Appl. Sci. Manufact, (38), pp. 1414-1424. doi: 10.1016/j.compositesa. 2006.08.008
12. Xu M. G., Archambault J. L., Reekie L., Dakin J. P. (1994). Thermally-compensated bending gauge using surface mounted fiber gratings. Int. J. Optoelectron. 9, pp. 281-283.
13. Jin L., Zhang W. G., Zhang H. et al. (2006). An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photon. Tech. Lett., (18), pp. 154- 156. doi: 10.1109/LPT.2005.860046
14. Yoon H. J., Costantini D. M., Limberger H. G. et al. (2006). In situ strain and temperature monitoring of adaptive composite materials. J. Intell. Mater. Syst. Struct. (17), pp. 1059-1067. doi: 10.1177/1045389x06064889
15. Cavaleiro P. M., Araújo F. M., Ferreira L. A. et al. (1999). Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boroncodoped germanosilicate fibers. IEEE Photon. Tech. Lett. 11(12), pp. 1635-1637.
16. Wei-Chong Du, Xiao-Ming Tao, Hwa-Yaw Tam. (1999). Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE photonics technology letters. 11(1), pp. 105-107. doi: 10.1109/68.736409
17. Triollet S., Robert L., Marin E., Ouerdane Y. (2011). Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings. Meas. Sci. and Tech. 22(1). doi:10.1088/0957-0233/22/1/015202. В. А. Резников, В. В. Махсидов, И. Н. Гуляев «Современное состояние методов определения деформации материала…»
18. Ilda Abe, Hypolito J. Kalinowski, Orlando Frazão et al. (2004). Superimposed Bragg gratings in highbirefringence fibre optics: three-parameter simultaneous measurements. Meas. Sci. Technol. 15, pp. 1453-1457. doi: 10.1088/0957-0233/15/8/003
19. Echevarría J., Quintela A., Jáuregui C., López-Higuera J. M. (2001). Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photonics Technology Letters. 13(7), pp. 696-698. doi: 10.1109/68.930418
20. Matrat J., Levin K., Jarlås R. (2001). Implementation of a Bragg grating strain rosette embedded in composites smart structures and materials. Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 4328, pp. 168-179.
21. Luyckx G. (2009-2010). Multi-axial strain monitoring of fibre reinforced thermosetting plastics using embedded highly birefringent optical fibre Bragg sensors. PhD Dissertation Department of Materials Science and Engineering, Ghent University.
22. Kehrli M., Tosin P., Luthy W., Weber H. P. (2000). Manufacture of fibres with multiple claddings. Laser Phys. 10, pp. 458-460.
23. Fleming J. W., Wood D. L. (1983). Refractive index dispersion and related properties in fluorine doped silica. Appl. Opt., 22, pp. 3102-3104. doi: 10.1364/AO.22.003102
24. Mashinsky V. M., Neustruev V. B., Dvoyrin V. V. et al. (2004). Germania-glass-core silica-glass-cladding mod-ified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification. Optics Lett., 29, pp. 2596-2598. doi: 10.1364/OL.29.002596
25. Triollet S., Robert L., Marin E., Ouerdane Y. (2011). Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings. Meas. Sci. and Tech. 22(1), doi:10.1088/0957-0233/22/1/015202.
26. Hao Chi, Xiao-Ming Tao, Dong-Xiao Yang. (2001). Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating. Optics letters. 26(24), pp. 1949-1951. doi: 10.1364/OL.26.001949
27. Luyckx G., Voet E., De Waele W., Degrieck J. (2010). Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study. Smart Mater. Struct, 19. doi: 10.1088/0964-1726/19/10/105017
28. Voet E., Luyckx G., De Waele W., Degrieck J. (2010). Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: II. Experimental validation. Smart Mater. Struct, 19. doi: 10.1088/0964-1726/19/10/105018
29. Udd E., Schulz W.L., Seim J. M. (1999). Measurement of multidimensional strain fields using fiber grating sensors for structural monitoring. Part of the SPIE Conference on Fiber Qptic Sensor Technology and Applications. Boston. 3860, pp. 24-34. doi: 10.1117/12.372944
30. Tadamichi Mawatari, Drew Nelson. (2008). A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement. Smart Mater. Struct. 17. doi: 10.1088/0964-1726/17/3/035033