1. Running S. W., Nemani R. R., Heinson F. A. et al. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), pp. 547-560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
2. Monteith J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, (9), pp. 747-766.
3. Gilmanov T. G., Tieszen L. L., Wylie B. K. et al. (2005). Integration of CO2 flux and remotely-sensed data for primary pro-duction and ecosystem respiration analyses in the northern great plains: Potential for quantitative spatial extrapolation. Global Ecology and Biogeography, 14, pp. 271-292. doi: 10.1111/j.1466-822X.2005.00151.x
4. Ünsalan C., Boyer K. I. (2004). Linearized vegetation indices based on a formal spatial framework. IEEE Transactions on Geoscience and Remote Sensing, 42(7), pp. 1575-1585. doi: 10.1109/TGRS.2004.826787
5. Jiang Z., Huete A. R., Didan K., Miura T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Enviromental, 112, 3833-3845. doi: 10.1016/j.rse.2008.06.006.
6. Chen R.-K., Yang Ch.-M. (2005). Determining the optimal timing for using LAI and NDVI of predict rice yield. Journal of Pho-togrammetry and Remote Sensing, 10, pp. 239 – 254.
7. Aparicio N., Villegas D., Casadesus J. et al. (2000). Canopy reflectance indices: a new tool for assessing durum wheat LAI and yield. (pp. 117-119). Madrid: CIHEAM – Options Mediterranean’s.
8. Asadov Kh. G., Fatullaev S. A., Zeinalova A. N. (2012). Remote control of soil pollution using spectral vegetation indi-ces. Kontrol'. Diagnostika, (3), pp. 65 – 68.
9. Gong P. Pu R. Miller J. R. (1995). Coniferous forest leaf area index estimation along Oregon transect using compact air-borne spectrographic imager data. Available at: telegeo.wgsr.uw.edu.pl/Teledetekcja_Srodowiska/tom_44/...