DOI: 10.14489/td.2016.02.pp.055-060
Чернышев А.В. МОДЕЛЬ МАГНИТНОГО ГИСТЕРЕЗИСА ДЖАЙЛЬСА-ЭЙТЕРТОНА И ЕЕ МОДИФИКАЦИИ (с. 55-60)
Аннотация. Проанализирован метод определения обратимой составляющей намагниченности в модели Джайльса–Эйтертона (Jiles–Atherton), показано существенное отличие получаемых с ее помощью результатов от известных. Приведен обзор работ, посвященных модификации этой модели в целях повышения ее точности. Рассмотрены работы, в которых указано на некорректное определение в модели Джайльса–Эйтертона дифференциальной необратимой восприимчивости.
Ключевые слова: модель Джайльса–Эйтертона (Jiles–Atherton), обратимая составляющая намагниченности, необратимая составляющая намагниченности, моделирование магнитного гистерезиса, магнитная восприимчивость.
Chernyshev A.V. THE MODEL OF MAGNETIC HYSTERESIS OF JILES-ATHERTON AND ITS MODIFICATIONS (pp. 55-60)
Abstract. It is analyzed the method of determining the reversible component of magnetization in Jiles–Atherton model of magnetic hysteresis. It is well known that it is necessary to eliminate the influence on the measurement results of the irreversible processes when determining the reversible susceptibility rev, i.e. at the same time the irreversible component of the magnetization must to be equal to the constant. This condition is not satisfied in the Jiles–Atherton model. Determined by means of this model results shows that character dependence of rev on the magnetization of considered ferromagnet appears different from the known. In addition, the authors of the model made a mistake in calculating of the energy balance of ferromagnet in the derivation of the expression for determining the differential irreversible susceptibility. It means that the Jiles–Atherton model does not have the correct physical basis but at the same time, in some cases, it provides satisfactory results in calculating of the hysteresis loops. A review of works devoted to the modification of the Jiles–Atherton model to improve its accuracy is presented.
Keywords: Jiles–Athrton model, reversible component of magnetization, irreversible component of magnetization, magnetic hysteresis modeling, magnetic susceptibility.
А. В. Чернышев (Институт прикладной физики НАН Беларуси, Минск) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. V. Chernyshev (State Scientific Institution “Institute of Applied Physics National Academy of Sciences of Belarus”, Minsk) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Jiles D. C., Atherton D. L. Theory of Ferromagnetic Hysteresis // JMMM. 1986. V. 61. P. 48 – 60. 2. Szewczyk R., Bienkowski A. Magnetoelastic Villari Effect in High–Permeability Mn-Zn Ferrites and Modeling of this Effect // JMMM. 2003. V. 254. P. 284 – 286. 3. Szewczyk R. Modelling of the Magnetic and Magnetostrictive Properties of High Permeability Mn-Zn Ferrites // Pramana, J. Phys. 2006. V. 67. P. 1165 – 1171. 4. Sy-Ruen Huang, Hong-Tai Chen, Chueh-Cheng Wu et al. Distinguishing Internal Winding Faults from Inrush Currents in Power Transformers Using Jiles–Atherton Model Parameters Based on Correlation Coefficient // IEEE Trans. Power Deliv. 2012. V. 27. P. 548 – 553. 5. Чернышев А. В. Моделирование обратимых процессов намагничивания ферромагнетиков // Контроль. Диагностика. 2009. № 5 (131). С. 20 – 28. 6. Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K. On Physical Aspects of the Jiles–Atherton Hysteresis Models // J. Appl. Phys. 2012. V. 112. P. 043916-1-0.43916-7. 7. Зирка С. Е., Мороз Ю. И., Мороз Е. Ю. Инверсная модель магнитного гистерезиса // Техн. электродин. 2010. № 4. С. 3 – 7. 8. Pasquale M., Basso V., Bertotti G. et al. Domain-Wall Motion in Random Potential and Hysteresis Modeling // J. Appl. Phys. 1998. V. 83. P. 6497 – 6499. 9. The Science of Hysteresis / Ed. G. Bertotti, I. D. Mayergoyz. Elsevier: Academic Press, 2006. 2097 p. 10. Tebble R. S., Corner W. D. Investigation on the Reversible Susceptibility of Ferromagnetics // Proc. Phys. Soc., Sect. B. 1950. V. 63. Pt. 2. № 372B. P. 1005 1016. 11. Gans R. Die reversible Permeabilität auf der Idealen Magnetisierungskurve // Аnn. d. Phys. 1910. V. 61. S. 379 – 395. 12. Chwastek K. Higher order Reversal Curves in Some Hysteresis Models // Arch. of Electr. Engin. 2012. V 61. P. 455 – 470. 13. Chwastek K. Modelling Offset Minor Hysteresis Loops with the Modified Jiles–Atherton Description // J. Phys. D: Appl. Phys. 2009. V. 42. P. 1 – 5. 14. Вонсовский С. В., Шур Я. С. Ферромагнетизм. М.: ОГИЗ, 1948. 816 с. 15. Чернышев А. В. О характере зависимости обратимой магнитной проницаемости стальных образцов от напряженности смещающего поля // ФММ. 2001. Т. 92. № 5. С. 49 – 54. 16. Feu A., Trueba A. Nonlinear Reversible Processes in YIG: An Explanation for the Rayleigh Loop Anomalies // J. Appl. Phys. 1974. V. 45. P. 5033 – 5036. 17. Leite Jean V., Benabou A., Sadowski N. Accurate Minor Loops Calculation with a Modified Jiles–Athrton Hysteresis Model // COMPEL: The Intern. J. for Computation and Mathematics in Electr. and Electron. Engineer. 2009. V. 28. Is. 3. P. 741 – 749. 18. Takács J. Mathematics of Hysteretic Phenomena: The T(x) Model for the Description of Hysteresis. Wiley-VCH, 2003. 173 p. 19. Harrison R. G. Positive-Feedback Theory of Hysteretic Recoil Loops in Hard Ferromagnetic Materials // IEEE Trans. Magn. 2008. V. 47. P. 175 – 191. 20. Koltermann P. I., Bastos J. P. A., Sadowski N., Batistela N. J. Nonlinear Magnetic Field Model by FEM Taking into Account Hysteresis Characteristics with M-B Variables // IEEE Trans. Magn. 2002. V. 38. P. 897 – 900.
1. Jiles D. C., Atherton D. L. (1986). Theory of ferromagnetic hysteresis. JMMM, 61, pp. 48-60. 2. Szewczyk R., Bienkowski A. (2003). Magnetoelastic Villari effect in high–permeability Mn-Zn ferrites and modeling of this effect. JMMM, 254, pp. 284- 286. doi: 10.1016/S0304-8853(02)00784-9 3. Szewczyk R. (2006). Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn fer-rites. Pramana, J. Phys, 67, pp. 1165-1171. doi: 10.1007/s12043-006-0031-z 4. Sy-Ruen Huang, Hong-Tai Chen, Chueh-Cheng Wu et al. (2012). Distinguishing internal winding faults from in-rush currents in power transformers using Jiles–Atherton model parameters based on correlation coefficient. IEEE Trans. Power Deliv, 27, pp. 548-553. doi: 10.1109/TPWRD.2011.2181543 5. Chernyshev A. V. (2009). Simulation of irreversible processes of magnetization of ferromagnets. Kontrol'. Diagnostika, 131(5), pp. 20-28. 6. Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K. (2012). On physical aspects of the Jiles–Atherton hysteresis models. J. Appl. Phys., 112, pp. 043916-1-0.43916-7. 7. Zirka S. E., Moroz Iu. I., Moroz E. Iu. (2010). Inverse model of magnetic hysteresis. Tekhnicheskaia elektrodinamika, (4), pp. 3-7. 8. Pasquale M., Basso V., Bertotti G. et al. (1998). Domain-Wall motion in random potential and hysteresis modeling. J. Appl. Phys., 83, pp. 6497-6499. 9. Bertotti G., Mayergoyz I. D. (2006). The science of hysteresis. Elsevier: Academic Press. 10. Tebble R. S., Corner W. D. (1950). Investigation on the reversible susceptibility of ferromagnetics. Proc. Phys. Soc., Sect. B, 63, Pt. 2, (0372B), pp. 1005-1016. 11. Gans R. (1910). Die reversible permeabilität auf der idealen magnetisierungskurve. Аnn. d. Phys, 61, pp. 379-395. 12. Chwastek K. (2012). Higher order reversal curves in some hysteresis models. Arch. of Electr. Engin, 61, pp. 455 – 470. doi: 10.2478/v10171-012-0036-9 13. Chwastek K. (2009). Modelling offset minor hysteresis loops with the modified Jiles–Atherton description. J. Phys. D: Appl. Phys, 42, pp. 1-5. doi: 10.1088/0022-3727/42/16/165002 14. Vonsovskii S. V., Shur Ia. S. (1948). Ferromagnetism. Moscow: OGIZ. 15. Chernyshev A. V. (2001). The nature of the dependence of the reversible magnetic permeability of steel samples on the strength of the biased field. FMM, 92(5), pp. 49-54. 16. Feu A., Trueba A. (1974). Nonlinear reversible processes in YIG: an explanation for the Rayleigh loop anomalies. J. Appl. Phys., 45, pp. 5033-5036. 17. Leite Jean V., Benabou A., Sadowski N. (2009). Accurate minor loops calculation with a modified Jiles–Athrton hysteresis model. COMPEL: The Intern. J. for Computation and Mathematics in Electr. and Electron. Engineer, 28(3), pp. 741-749. 18. Takács J. (2003). Mathematics of hysteretic phenomena: the T(x) model for the description of hysteresis. Wiley-VCH. 19. Harrison R. G. (2008). Positivefeedback theory of hysteretic recoil loops in hard ferromagnetic materials. IEEE Trans. Magn., 47, pp. 175-191. doi: 10.1109/TMAG.2010.2089528 20. Koltermann P. I., Bastos J. P. A., Sadowski N., Batistela N. J. (2002). Nonlinear magnetic field model by FEM taking into account hysteresis characteristics with M-B variables. IEEE Trans. Magn., 38, pp. 897-900. doi: 10.1109/20.996231.
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа статьи заполните форму:
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please fill out the form below:
.
.
|