DOI: 10.14489/td.2017.12.pp.054-063
Ложкова Д. С. ОЦЕНКА ДОСТОВЕРНОСТИ АВТОМАТИЗИРОВАННОГО УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПОЛУФАБРИКАТОВ ОСНОВНЫХ ДЕТАЛЕЙ ГТД ИЗ ТИТАНОВОГО СПЛАВА С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОЙ МОДЕЛИ (c. 54-63)
Аннотация. Рассмотрены вопросы оценки достоверности автоматизированного ультразвукового контроля полуфабрикатов основных деталей газотурбинного двигателя из титанового сплава с применением математической модели, имитирующей процессы контроля. Описаны недостатки подхода, используемого ранее, основанного на экспериментальных исследованиях образцов с искусственными дефектами. Предложен способ выбора геометрических параметров и ориентации моделей газонасыщенных включений с учетом формы и технологического процесса изготовления исследуемого полуфабриката, а также алгоритм, позволяющий учитывать морфологические особенности естественных газонасыщенных включений.
Ключевые слова: автоматизированный ультразвуковой контроль, газонасыщенные включения, вероятность обнаружения дефектов при ультразвуковом контроле, оптимальный режим контроля, математическое моделирование процессов распространения волн от фокусированного пьезоэлектрического преобразователя.
Lozhkova D. S. THE ESTIMATION OF RELIABILITY OF TITANIUM GAS TURBINE ENGINE SEMI-FINISHED CRITICAL PARTS AUTOMATED ULTRASONIC TESTING WITH MATHEMATICAL MODELLING (pp. 54-63)
Abstract. Questions of titanium gas turbine engine semifinished critical parts automated ultrasonic testing reliability estimation with mathematical modelling oftesting process are observed. Limitations of the previous approach based on specimens with synthetic defects experimental researches are described. The choice method of hard alpha model geometrical parameters and orientation which consider inspected semifinished part form and manufacturing process is offered. Also the algorithm which consider morphological features of natural hard alpha inclusions is offered.
Keywords: automated ultrasonic testing, hard alpha inclusions, ultrasonic testing probability of detection, ultrasonic testing optimal parameters, mathematical modeling.
Д. С. Ложкова (ФГУП «ВНИИ авиационных материалов», Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
D. S. Lozhkova (Federal State Unitary Enterprise “All-Russian Scientific Research Institute Of Aviation Materials”, Russia, Moscow) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Каблов Е. Н. Контроль качества материалов – гарантия безопасности эксплуатации авиационной техники // Авиационные материалы и технологии. 2001. № 1. С. 3 – 8. 2. Ночовная Н. А. Перспективы и проблемы применения титановых сплавов // Авиационные материалы и технологии. Вып. Перспективы развития и применения титановых сплавов для самолетов, ракет, двигателей и судов. 2007. № 1. С. 4 – 8. 3. Кашапов О. С., Новак А. В., Ночовная Н. А., Павлова Т. В. Состояние, проблемы и перспективы создания жаропрочных титановых сплавов для деталей ГТД // Тр. ВИАМ: электрон. науч.-технич. журн. 2013. № 3. Ст. 02. URL: http://www.viam-works.ru (дата обращения: 22.01.2016). 4. Каблов Е. Н., Оспенникова О. Г., Базылева О. А. Материалы для высокотеплонагруженных деталей газотурбинных двигателей // Вестник МГТУ им. И. Э. Баумана. Сер. Машиностроение. 2011. № SP2. С. 13 – 19. 5. Каблов Е. Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // Авиационные материалы и технологии. 2012. № S. С. 7 – 17. 6. Каблов Е. Н. Современные материалы – основа инновационной модернизации России // Металлы Евразии. 2012. № 3. С. 10 – 15. 7. Хорев А. И. Фундаментальные и прикладные работы по конструкционным титановым сплавам и перспективные направления их развития // Тр. ВИАМ: электрон. науч.-технич. журн., 2013. № 2. Ст. 04. URL: http://www.viam-works.ru (дата обращения: 22.01.2016). 8. Иноземцев А. А., Башкатов И. Г., Коряковцев А. С. Применение сплавов на основе титана в изделиях разработки ОАО «Авиадвигатель» // Авиационные материалы и технологии. Вып. Перспективы развития и применения титановых сплавов для самолетов, ракет, двигателей и судов. 2007. № 1. С. 13 – 16. 9. Авиационные правила. Ч. 33. Нормы летной годности двигателей воздушных судов / МАК. М.: ОАО «Авиаиздат», 2012. С. 7 – 11. 10. FAA Advisory Circular: AC 33.14-1, titled “Damage Tolerance for High Energy Turbine Engine Rotors”. Washington, U.S. Dpt of Transportation, Federal Aviation Administration, 2001. 11. Ложкова Д. С., Далин М. А., Цыкунов Н. В. Оценка достоверности автоматизированного ультразвукового контроля титановых сплавов // В мире неразрушающего контроля. 2014. № 6. С. 24 – 28. 12. Каблов Е. Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. № 1. С. 3 – 33. DOI: 10.18577/2071-9140-2015-0-1-3-33. 13. MIL-HDBK-1823A. Nondestructive evaluation system reliability assessment / Департамент обороны США, 2009. 14. Ложкова Д. С., Далин М. А. Оценка достоверности автоматизированного ультразвукового контроля титановых сплавов с использованием математического моделирования // В мире НК. 2014. № 4. С. 15 – 19. 15. DOT/FAA/AR-07/63. Update of Default Probability of Detection Curves for the Ultrasonic Detection of Hard Alpha Inclusions in Titanium Alloy Billets, 2008. 16. The development of anomaly distributions for aircraft engine titanium disk alloys / American Institute of Aeronautics and Astronautics, 1997.
1. Kablov E. N. (2001). The quality control of materials is a guarantee of the safe operation of aircraft. Aviatsionnye materialy i tekhnologii, (1), pp. 3-8. [in Russian language] 2. Nochovnaia N. A. (2007). Prospects and problems of titanium alloys usage. Aviatsionnye materialy i tekhnologii. Vypusk Perspektivy razvitiia i primeneniia titanovykh splavov dlia samoletov, raket, dvigatelei i sudov, (1), pp. 4-8. Moscow: VIAM. [in Russian language] 3. Kashapov O. S., Novak A. V., Nochovnaia N. A., Pavlova T. V. (2013). State, problems and prospects of development of heat-resistant titanium alloys for GTE parts. Trudy VIAM, (3), article No. 02. Available at: viam-works.ru (Accessed: 22.01.2016). [in Russian language] 4. Kablov E. N., Ospennikova O. G., Bazyleva O. A. (2011). Materials for high thermal loaded parts of GTE. Vestnik MGTU im. N. E. Baumana. Seriia Mashinostroenie, (2), pp. 13-19. [in Russian language] 5. Kablov E. N. (2012). Strategic directions of development of materials and technologies of their processing for the period until 2030. Aviatsionnye materialy i tekhnologii, (S), pp. 7-17. [in Russian language] 6. Kablov E. N. (2012). Modern materials - the basis of innovative modernization of Russia. Metally Evrazii, (3), pp. 10-15. [in Russian language] 7. Khorev A. I. (2013). Fundamental and applied works on structural titanium alloys and promising directions of their development. Trudy VIAM, (2), article No. 04. Available at: viam-works.ru (Accessed: 22.01.2016) [in Russian language] 8. Inozemtsev A. A., Bashkatov I. G., Koriakovtsev A. S. (2007). Application of alloys based on titanium in products developed by JSC «Aviadvigatel». Aviatsionnye materialy i tekhnologii. Vypusk Perspektivy razvitiia i primeneniia titanovykh splavov dlia samoletov, raket, dvigatelei i sudov, (1), pp. 13-16. [in Russian language] 9. Norms of airworthiness of aircraft engines. (2012). Aviation rules. Part 33. Interstate aviation Committee. (pp. 7-11). Moscow: Aviaizdat. [in Russian language] 10. FAA Advisory Circular: AC 33.14-1, titled “Damage Tolerance for High Energy Turbine Engine Rotors”. (2001). Washington, U.S. Dpt of Transportation, Federal Aviation Administration. 11. Lozhkova D. S., Dalin M. A., Tsykunov N. V. (2014). Reliability evaluation of titanium alloys automated ultrasonic inspection using mathematical modeling. V mire nerazrushaiushchego kontrolia, (6), pp. 24-28. [in Russian language] 12. Kablov E. N. (2015). Innovation developments of FSUE «All-Russian Scientific Institute of Aviation Materials» of the State Research Center of the Russian Federation on implementation «Strategic directions of development of materials and processing technologies for the period up to 2030». Aviatsionnye materialy i tekhnologii, (1), pp. 3-33. doi: 10.18577/2071-9140-2015-0-1-3-33. [in Russian language] 13. Nondestructive Evaluation System Reliability Assessment. (2009). MIL-HDBK-1823A. The Department of defense. Dayton, Ohio. 14. Lozhkova D. S., Dalin M. A. (2014). Evaluation of the reliability of automated ultrasonic testing of titanium alloys using mathematical modeling. V mire NK, (4), pp. 15-19. [in Russian language] 15. Update of default probability of detection curves for the ultrasonic detection of hard alpha inclusions in titanium alloy billets. (2008). DOT/FAA/AR-07/63. 16. The development of anomaly distributions for aircraft engine titanium disk alloys. (1997). American Institute of Aeronautics and Astronautics.
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа статьи заполните форму:
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please fill out the form below:
.
.
|