Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2018, 04 Aпрель (April)

DOI: 10.14489/td.2018.04.pp.052-057

Шилин А. Н., Шилин А. А., Артюшенко Н. С., Авдеюк Д. Н.
РЕФЛЕКТОМЕТР ДЛЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ С АВТОМАТИЧЕСКОЙ КОРРЕКЦИЕЙ МЕТОДИЧЕСКОЙ ПОГРЕШНОСТИ
(c. 52-57)

Аннотация. Приведена функциональная блоксхема рефлектометра для линий электропередачи с автоматической коррекцией методической погрешности. Основной причиной методической погрешности рефлектометра является нестабильность фазовой скорости сигнала в линии. Фазовая скорость сигнала зависит от внешних климатических факторов. Предложенный рефлектометр содержит блок автоматической коррекции фазовой скорости, которая вычисляется по измеренным с помощью датчиков величинам климатических факторов. Автоматическая коррекция позволяет повысить точность измерения расстояния до места аварии.

Ключевые слова:  аварийные режимы воздушных линий (ВЛ), мониторинг ВЛ, средства определения мест повреждений ВЛ, линии с распределенными параметрами, рефлектометры.

 

Shilin A. N., Shilin A. A., Artyushenko N. S., Avdeyuk D. N.
REFLECTOMETER FOR POWER TRANSMISSION LINES WITH AUTOMATIC CORRECTION OF METHODICAL ERROR
(pp. 52-57)

Abstract. The article provides a functional block diagram of the reflectometer for transmission lines with automatic correction of methodical error. The principle of operation of the device is based on the local method of determining the distance to the fault location: probing pulses are sent to the investigated line and signals received from the fault location are sent, and then the distance to the fault location is determined from the time delay of the reflected pulses relative to the probing pulse. The speed of propagation of a pulse in a line depends on external factors. The main reason for the methodical error of the reflectometer is the instability of the phase velocity of the signal in the line. The phase velocity of the signal, which is taken into account when testing the sample signal, that is according to the known distance to the accident site, depends on external climatic factors and dependence on the design of the line with supports. The proposed reflectometer contains an automatic phase velocity correction unit that contains sensors of climatic factors: an wire temperature sensor, an air temperature sensor, an air permittivity sensor, a ground resistivity sensor and an information processing unit calculating corrective amendments for the phase velocity. The implementation of the correction can be performed without interfering with the device circuit through the shortening sensor, that is with minimal interference with the reflectometer design. The reflectometer, containing the developed adaptive amplifier of reflected signals, automatically corrects the amplitude of the signal. Automatic correction can improve the accuracy of measuring the distance to the accident site.

Keywords: emergency modes of overhead lines (OL), OL monitoring, means of fault location of overhead lines, lines with distributed parameters, reflectometer.

Рус

А. Н. Шилин, А. А. Шилин, Н. С. Артюшенко, Д. Н. Авдеюк (Волгоградский государственный технический университет, Волгоград, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

A. N. Shilin, A. A. Shilin, N. S. Artyushenko, D. N. Avdeyuk (Volgograd State Technical University, Volgograd, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Рус

1. Пат. на изобр. РФ 2098838. МПК G 01 R 31/11. Способ определения расстояния до места повреждения и длины проводов и кабелей линий электропередачи и связи и устройство для его осуществления / Н. А. Тарасов, Ю. А. Кириллов, И. А. Голуб; заявл. 13.02.1996; опубл. 10.12.1997.
2. Бессонов А. А. Теоретические основы электротехники: Электрические цепи. М.: Высш. шк., 1978. 528 с.
3. Шилин А. Н., Шилин А. А., Артюшенко Н. С. Расчет погрешностей рефлектометров для мониторинга линий электропередачи // Контроль. Диагностика. 2015. № 9. С. 52 – 59.
4. Марголин Н. Ф. Сопротивление воздушных линий передачи. М.: Мособлполиграф, 1937. 61 с.
5. Поспелов Г. Е., Ершевич В. В. Влияние температуры проводов на потери электроэнергии в активных сопротивлениях проводов воздушных линий электропередачи // Электричество. 1973. № 10. С. 81 – 83.
6. Герасименко А. А., Кинев Е. С., Чупак Т. М. Электроэнергетические системы и сети: конспект лекций. Красноярск: ИПК СФУ, 2008. 279 с.
7. Шилин А. Н., Шилин А. А., Артюшенко Н. С. Анализ искажения формы сигнала при локационном мониторинге линий электропередачи // Контроль. Диагностика. 2017. № 7. С. 44 – 49.

Eng

1. Tarasov N. A., Kirillov Iu. A., Golub I. A. (1997). Method for determining the distance to the fault location and the length of wires and cables of power lines and communications and a device for its implementation. Ru Patent No. 2098838. Russian Federation [in Russian language]
2. Bessonov A. A. (1978). Theoretical foundations of electrical engineering: Electrical circuits. Moscow: Vysshaia shkola. [in Russian language]
3. Shilin A. N., Shilin A. A., Artiushenko N. S. (2015). Calculation errors of reflectometers for monitoring power lines. Kontrol'. Diagnostika, (9), pp. 52-59. Doi: 10.14489/td.2015.09.pp.052-059 [in Russian language]
4. Margolin N. F. (1937). Resistance of overhead transmission lines. Moscow: Mosoblpoligraf. [in Russian language]
5. Pospelov G. E., Ershevich V. V. (1973). Effect of wire temperature on power losses in active resistance of power transmission lines. Elektrichestvo, (10), pp. 81-83. [in Russian language]
6. Gerasimenko A. A., Kinev E. S., Chupak T. M. (2008). Electric power systems and networks: lecture notes. Krasnoiarsk: IPK SFU. [in Russian language]
7. Shilin A. N., Shilin A. A., Artiushenko N. S. (2017). Analysis of the distortion of the signal form for location monitoring of electric transmission lines. Kontrol'. Diagnostika, (7), pp. 44-49. doi: 10.14489/td.2017.07. pp.044-049 [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.04.pp.052-057

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.04.pp.052-057

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования