Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2018, 06 June

DOI: 10.14489/td.2018.06.pp.034-039

 

Budadin O. N., Kutyurin V. Yu., Mukhanova T. A., Granev I. S.
MEASUREMENT OF STRAINS IN COMPOSITE HIGH-PRESSURE CYLINDERS USING BRAGG FIBER-OPTIC GRATINGS
(pp. 34-39)

Abstract. Recent years, composite high-pressure cylinders are widely used in different industries. For these cylinders, a value of residual strain after nominaI-pressure loading of a cylinder is one of acceptance parameters. For several types of cylinders, reading the information about strains as a function of overpressure value during checking of their quality is that parameter.Traditionally, reading such dependence is carried out using straingage transducers to be cemented to the outer surface of a cylinder. But with developing the sensorics in new areas, for example fiber-optic sensors, it became possible to build sensitive elements in structural elements of products. The present paper considers a method of measuring high-pressure cylinder strains using fiber-optic lines with Bragg fiber gratings recorded in their structure. A principal possibility of measuring strain inside a material of filament-wound products during their tests using Bragg gratings on homeproduced fiber-optic lines (Bragg fiber-optic measuring lines) is shown.

Keywords: high-pressure cylinder, composite materials, strain, fiber-optic sensors, Bragg grating.

 

O. N. Budadin, V. Yu. Kutyurin, T. A. Mukhanova, I. S. Granev (Central Research Institute for Special Machinery, JSC (CRISM JSC), Khotkovo, Moscow Region, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

 

 

1. Takeda N. (2008). Fiber optic sensor-based SHM technologies for aerospace applications in Japan. Proc. SPIE 6933. Smart Sensor Phenomena, Technology, Networks, and Systems. doi: 10.1117/12.776838. Available at: http://dx.doi.org/10.1117/ 12.776838
2. Takeda N., Tajima N., Sakurai T., Kishi T. (2005). Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan. Structural control and health monitoring, 12, pp. 245-255.
3. Childers B. A., Froggatt M. E., Allison S. G. et al. (2001). Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure. Proc. SPIE 4332 «Smart Structures and Materials–2001»: Industrial and Commercial Applications of Smart Structures Technologies. doi: 10.1117/12.429650; Available at: http://dx.doi.org/10.1117/ 12.429650.
4. Honglei Guo, Gaozhi Xiao, Nezih Mrad, Jianping Yao. (2011). Fiber optic sensors for structural health monitoring of air platforms. Sensors, 11, pp. 3687-3705.
5. Venu Gopal, Madhav Annamdas. (2011). Review on developments in fiber optical sensors and applications. International Journal of Materials Engineering, (1), pp. 1-16.
6. Harrison J. S., Wise S. A., Bryant R. G. et al. (1998). Innovative materials for aircraft morphing. Proc. SPIE 3326 «Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies». doi: 10.1117/12.310639; Available at: http://dx.doi.org/10.1117/12.310639
7. Wild G., Hinckley S. (2008). Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art IEEE. Sensors Journal, 8, pp. 1184-1193.
8. Mizutani T., Takeda N., Takeya H. (2006). On-board strain measurement of a cryogenic composite tank mounted on a reusable rocket using FBG sensors. Structural Health Monitoring, 5, pp. 205-214.
9. Kablov E. N., Sivakov D. V., Gulyaev I. N. et al. (2010). Application of optical fiber as deformation sensors in polymer composite materials. Vse materialy. Enciklopedicheskij spravochnik, (3), pp. 13-17. [in Russian language]
10. Sorokin K. V., Goncharov V. A., SHienok A. M., Fedotov M. Yu. (2013). The possibilities of fiber-optic sensors based on Bragg gratings in informocomposites for registration of shock impact. Vse materialy. Enciklopedicheskij spravochnik, (12), pp. 19. [in Russian language]
11. Mihailovskiy K. V., Bazanov M. A. (2016). Measurement of residual technological deformations in carbon plastic by introducing fiber Bragg gratings. Konstrukcii iz kompozicionnyh materialov, (2), pp. 54-58. [in Russian language]
12. Shchevelev A. S., Kikot V. V., Udalov A. Yu. (2016). Information-measuring system for monitoring space technology products. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy, 3(2), pp. 60-65. [in Russian language]
13. Kablov E. N., Sivakov D. V., Gulyaev I. N., Sorokin K. V. Method for measuring the deformation of a composite structure. Patent No. RU 2 427 795 C1. [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.06.pp.034-039

and fill out the  form  

 

 

 

 
Rambler's Top100 Яндекс цитирования