Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2018, 08 август (August)

DOI: 10.14489/td.2018.08.pp.014-020

Батаев В. А., Степанова Л. Н., Лапердина Н. А., Чернова В. В.
АКУСТИКО-ЭМИССИОННЫЙ КОНТРОЛЬ РАННЕЙ СТАДИИ РАЗВИТИЯ ДЕФЕКТОВ ПРИ СТАТИЧЕСКОМ НАГРУЖЕНИИ ОБРАЗЦОВ ИЗ УГЛЕПЛАСТИКА
(с. 14-20)

Аннотация. Разработана методика акустико-эмиссионного (АЭ) контроля ранней стадии развития дефектов при статическом нагружении образцов из углепластика Т700. Методом конечных элементов осуществлялся расчет несущей способности образцов и применялся подход, основанный на использовании модели прогрессирующего повреждения. Предложено оценивать модовый состав сигналов АЭ по величине структурного коэффициента, определяемого с использованием вейвлет-преобразования. Установлено, что если при увеличении нагрузки происходит уменьшение структурного коэффициента, то это соответствует разрушению матрицы, а его увеличение – разрушению волокна. Данные положения были подтверждены фрактографией, которая показала, что при нагрузке, составляющей 18 кН, доминирующим механизмом было разрушение матрицы и ее выкрашивание. На шлифах, выполненных из материала образцов, где наблюдалась активная локация сигналов АЭ, при нагрузке 32 кН были выявлены не только разрушения матрицы, но и порванные волокна, расслоения волокон монослоя, пустоты, заполненные полировочной суспензией. Проведенная фрактография подтвердила результаты расчетов нагрузок, при которых происходят разрушения углепластика на ранней стадии развития дефектов.

Ключевые слова:  углепластик, акустическая эмиссия, дефект, мода, матрица, волокно, расслоение.

 

Bataev V. A., Stepanova L. N., Laperdina N. A., Chernova V. V.
ACOUSTIC EMISSION CONTROL OF THE EARLY STAGE OF DEFECTS DEVELOPMENT UNDER STATIC LOADING OF CARBON FIBER SAMPLES
(pp. 14-20)

Abstract. The method of acoustic emission (AE) control of the early stage of defects development under static loading of samples from carbon fiber T700 is developed. The finite element method was used to calculate the bearing capacity of carbon fiber samples and to apply an approach based on the use of the progressive damage model. The modal composition of AE signals is proposed to estimate the value of the structural coefficient determined using the wavelet transform. It is established that, if as the load increases there is a reduction of the structural coefficient, it is equivalent to the destruction of the matrix, and its increase was the destruction of the fibers. These provisions were confirmed by fractography, which showed that at a load of 18 kN, the dominant mechanism was the destruction of the matrix and its staining. On the thin sections made from samples where there are active location of AE signals, with a load of 32 kN was revealed not only the destruction of the matrix, but the torn fibers, bundles of fibers of the surface voids filled with a polishing suspension. THE fractography confirmed the results of the calculations of the loads which occur fracture of CFRP at early stages of development defects.

Keywords: carbon fiber reinforced plastic (CFRP), acoustic emission, defect, mode, matrix, fiber, delamination.

Рус

В. А. Батаев (Новосибирский государственный технический университет (НГТУ), Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Л. Н. Степанова, Н. А. Лапердина (Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (Сибирский государственный университет путей сообщения (СГУПС), Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

V. A. Bataev (Novosibirsk State Technical University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
L. N. Stepanova, N. A. Laperdina (Federal State Unitary Enterprise “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (Siberian Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Степанова Л. Н., Коваленко Н. А., Огнянова Е. С. и др. Использование метода конечных элементов, тензометрии и акустической эмиссии для определения механизма разрушения образцов из углепластика при прочностных испытаниях // Контроль. Диагностика. 2015. № 4. С. 29 – 36.
2. Степанова Л. Н., Рамазанов И. С., Чернова В. В. Вейвлетанализ структуры сигналов акустической эмиссии при прочностных испытаниях образцов из углепластика // Контроль. Диагностика. 2015. № 7. С. 54 – 62.
3. Степанова Л. Н., Батаев В. А., Чернова В. В. Исследование разрушения образцов из углепластика при статическом нагружении с использованием методов акустической эмиссии и фрактографии // Дефектоскопия. 2017. № 6. С. 26 – 33.
4. Tserpes K. I., Labeas G., Papanikov P., Kermanidis Th. Strength prediction of bolted joints in graphiteepoxy composite laminates // Composites. Part B 33. 2012. P. 521 – 529.
5. Chang F. K, Chang K. Y. A progressive damage model for laminated composites containing stress concentrators // J. Comp. Mater. 1987. V. 21. P. 834 – 855.
6. Cardoni M., Gianneo A., Giglio M. A low frequency lambwaves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite // Journal of Acoustic Emission. 2014. V. 32. P. 1 – 20.
7. Zheng G. T., Backley M. A., Kister G. Blind deconvolution of acoustic emission signals for damage identification in composites // Journal AIAA. 2001. V. 39. N 6. P. 1198 – 1205.
8. Sause M. G. R. Acoustic emission signal propagation in damaged composite structures // Journal of Acoustic Emission. 2013. V. 31. P. 1 – 18.
9. Gorman M. Modal AE analysis of fracture and failure in composite materials, and the quality and life of high composite pressure vessels // Journal of Acoustic Emission. 2011. V. 29. P. 1 – 28.
10. Workman G. L., Walker J., Lansing M. Acoustic method of damage sensing in composite materials // Alabama Univ. Material Processing Lab., NASA. USA. 1994. P. 42 – 45.

Eng

1. Stepanova L. N., Kovalenko N. A., Ognyanova E. S. et al. (2015). The application of finite elements method, strain measurement and acoustic emission for determination fracture mechanism of carbon fiberreinforced plastic samples during strength tests. Kontrol’. Diagnostika, (4), pp. 29-36. doi: 10.14489/td.2015.04.pp.029-036 [in Russian language]
2. Stepanova L. N., Ramazanov I. S., Chernova V. V. (2015). Acoustic emission signals structure wavelet analysis while strength tests of carbon fiber samples. Testing. Diagnostics, (7), pp. 54-62. doi: 10.14489/td.2015.07.pp.054-062 [in Russian language]
3. Stepanova L. N., Bataev V. A., Chernova V. V. (2017). Research of CFRP samples’ damage during static loading with approach of acoustic emission technique and fractography. Defektoskopiia, (6), pp. 26-33. [in Russian language]
4. Tserpes K. I., Labeas G., Papanikov P., Kermanidis Th. (2012). Strength prediction of bolted joints in graphiteepoxy composite laminates. Composites: Part B 33, pp. 521- 529.
5. Chang F. K, Chang K. Y. (1987). A progressive damage model for laminated composites containing stress concentrators. Journal of Composite Materials, Vol. 21, pp. 834-855.
6. Cardoni M., Gianneo A., Giglio M. (2014). A low frequency lambwaves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite. Journal of Acoustic Emission, Vol. 32, pp. 1-20.
7. Zheng G. T., Backley M. A., Kister G. (2001). Blind deconvolution of acoustic emission signals for damage identification in composites. Journal AIAA, Vol.39, (6), pp. 1198-1205.
8. Sause, Markus G.R. (2013). Acoustic emission signal propagation in damaged composite structures. Journal of Acoustic Emission, Vol. 31, pp. 1-18.
9. Gorman M. (2011). Modal AE analysis of fracture and failure in composite materials, and the quality and life of high composite pressure vessels. Journal of Acoustic Emission, Vol. 29, pp. 1-28.
10. Workman G. L., Walker J., Lansing M. (1994). Acoustic method of damage sensing in composite materials. Alabama Univ. Material Processing Lab., NASA. – USA, pp. 42-45.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.08.pp.014-020

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.08.pp.014-020

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования