DOI: 10.14489/td.2018.09.pp.048-053
Соколовская Ю. Г., Жаринов А. Н., Карабутов А. А. ПРИМЕНЕНИЕ ЛАЗЕРНО-УЛЬТРАЗВУКОВОГО МЕТОДА ДЛЯ КОНТРОЛЯ НЕОДНОРОДНОСТЕЙ РАСПРЕДЕЛЕНИЯ ПОЛИМЕРНОЙ МАТРИЦЫ В УГЛЕПЛАСТИКОВЫХ КОНСТРУКЦИЯХ (с. 48-53)
Аннотация. Предложена методика выявления неоднородностей, образующихся в процессе производства композитных конструкций, с помощью лазерно-ультразвукового метода. Показан способ определения локального объемного содержания матрицы и наполнителя в углепластиковых конструкциях. Получены распределения объемных концентраций в выбранных областях композитной конструкции – стрингерной панели. Показано, что в стрингерной панели имеются области как с избытком, так и с недостатком эпоксидной матрицы. Получены изображения производственных дефектов – зазоров между лентами углеродной ткани.
Ключевые слова: углепластики, стрингерная панель, лазерно-ультразвуковой метод, продольная акустическая волна.
Sokolovskaya Yu. G., Zharinov A. N., Karabutov A. A. APPLICATION OF LASER-ULTRASONIC METHOD FOR TESTING OF INHOMOGENEITIES OF POLYMER MATRIX DISTRIBUTION IN CARBON FIBER REINFORCED PLASTIC CONSTRUCTIONS (pp. 48-53)
Abstract. Carbon fiber reinforced plastics (CFRP) are currently widely used in industry. Such materials can have some inhomogeneity of polymer matrix distribution and inaccuracy of carbon fiber laying. The aim of this work is detection of manufacturing defects in CFRP structure using laser-ultrasonic method and quantitative evaluation of volume concentration of matrix and filler. This method allows generate of short and power probe acoustical pulses in wide spectral range from tenths of MHz to tens of MHz. The distributions of volume concentrations in the selected areas of the composite structure are obtained. It is shown that in this construction there are areas with both excess and deficiency of epoxy matrix. The images of manufacturing defects, which is gaps between the strips of carbon tissue, are obtained. This analysis allows searching potential vulnerable parts of composite structure, because areas with such gaps have lower strength in comparison with defectfree areas. Proposed method may be used for quality monitoring of composite structure before exploitation.
Keywords: carbon fiber reinforced plastics, stringer panel, laser-ultrasonic method, longitudinal ultrasonic wave.
Ю. Г. Соколовская, А. Н. Жаринов (Московский государственный университет им. М. В. Ломоносова, Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. А. Карабутов (Национальный исследовательский технологический университет «МИСиС», Москва, Россия; Международный учебно-научный лазерный центр МГУ им. М. В. Ломоносова, Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Yu. G. Sokolovskaya, A. N. Zharinov ((M. V. Lomonosov Moscow State University, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. A. Karabutov (National University of Science and Technology “MISiS, Moscow, Russia; International Laser Center, M. V. Lomonosov Moscow State University, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А. Пространственно-армированные композиционные материалы: справочник. М.: Машиностроение, 1987. 224 с. 2. Любин Дж. Справочник по композиционным материалам. М.: Машиностроение, 1988. 447 с. 3. Adams R. D., Cawle P. A review of defect types and nondestructive testing techniques for composites and bonded joints // NDT International. 1988. V. 21. N 4. P. 208 – 222. 4. Мурашов В. В., Румянцев А. Ф. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов и методы их выявления. Ч. 1. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов // Контроль. Диагностика. 2007. № 4. С. 23 – 32. 5. Неразрушающий контроль и диагностика: справочник / В. В. Клюев, Ф. Р. Соснин, А. В. Ковалев; под общ. ред. В. В. Клюева. 3-е изд., испр. и доп. М.: Машиностроение, 2005. 658 с. 6. Scott I. G., Scala C. M. A review of non-destructive testing of composite materials // NDT International. 1982. V. 15. N 2. P. 75 – 86. 7. Степанова Л. Н., Чернова В. В. Анализ структурных коэффициентов сигналов акустической эмиссии при статическом нагружении образцов из углепластика с ударными повреждениями // Контроль. Диагностика. 2017. № 6. С. 34 – 41. 8. Степанова Л. Н., Анохин Г. Г., Чернова В. В. Использование метода акустической эмиссии при циклических испытаниях образцов из углепластика с разными типами укладки монослоев // Контроль. Диагностика. 2016. № 2. С. 66 – 74. 9. Степанова Л. Н., Рамазанов И. С., Чернова В. В. Вейвлет-анализ структуры сигналов акустической эмиссии при прочностных испытаниях образцов из углепластика // Контроль. Диагностика. 2015. № 7. С. 56 – 62. 10. Бойчук А. С., Генералов А. С., Диков И. А. Контроль деталей и конструкций из полимерных композиционных материалов с применением технологии ультразвуковых фазированых решеток // Авиационные материалы и технологии. 2017. № 1. С. 45 – 50. 11. Карабутов А. А., Подымова Н. Б., Беляев И. О. Исследование влияния пористости на затухание ультразвука в углепластиковых композитах методом лазерно-ультразвуковой спектроскопии // Акустический журнал. 2013. Т. 59. № 6. С. 714 – 721. 12. Мурашов В. В., Румянцев В. Ф. Диагностика состава и свойств полимерных композитов в деталях и конструкциях // Контроль. Диагностика. 2008. № 8. С. 13 – 17. 13. Гемберг А. А., Прилуцкий М. А. Сравнение совмещенной и раздельно-совмещенной схем ультразвукового контроля углепластиков // Известия высших учебных заведений. Машиностроение. 2016. № 4. С. 44 – 51. 14. Бойчук А. С., Мурашов В. В., Чертищев В. Ю., Диков И. А. Определение пористости в монолитных конструкциях из углепластиков ультразвуковым эхометодом с использованием лазерного возбуждения ультразвуковых колебаний // Тр. ВИАМ. 2016. № 12. С. 74 – 82. 15. Подымова Н. Б., Карабутов А. А., Кобелева Л. И., Чернышова Т. А. Лазерный оптико-акустический метод анализа влияния концентрации дисперсных наполнителей и пористости на локальные упругие модули металломатричных композиционных материалов // Материаловедение. 2012. № 10. С. 47 – 53. 16. Подымова Н. Б., Карабутов А. А., Кобелева Л. И., Чернышова Т. А. Лазерный оптико-акустический метод измерения локальной пористости дисперсно-наполненных металломатричных композиционных материалов // Перспективные материалы. 2013. № 3. С. 81 – 87. 17. Гусев В. Э., Карабутов А. А. Лазерная оптоакустика. М.: Наука, 1991. 304 с. 18. Труэлл Р., Эльбаум Ч., Чик Б. Ультразвуковые методы в физике твердого тела. М.: Мир, 1972. 302 с. 19. Григорьев М. М., Коган Д. И., Твердая О. Н., Панина Н. Н. Особенности изготовления ПКМ методом RFI // Тр. ВИАМ: электронный науч. журнал. 2013. № 4. 20. Душин М. И., Донецкий К. И., Караваев Р. Ю. Установление причин образования пористости при изготовлении ПКМ // Тр. ВИАМ: электронный науч. журнал. 2016. № 6. С. 68 – 78. 21. Жаркий С. М., Карабутов А. А., Пеливанов И. М. и др. Исследование слоев пористого кремния лазерным ультразвуковым методом // Физика и техника полупроводников. 2003. Т. 37. Вып. 4. С. 485 – 489.
1. Tarnopol'skiy Yu. M., Zhigun I. G., Polyakov V. A. (1987). Spatially reinforced composite materials: handbook. Moscow: Mashinostroenie. [in Russian language] 2. Lyubin Dzh. (1988). Handbook of composite materials. Moscow: Mashinostroenie. [in Russian language] 3. Adams R. D., Cawle P. (1988). A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT International, 21(4), pp. 208-222. 4. Murashov V. V., Rumyantsev A. F. (2007). Defects of monolithic parts and multilayer structures of polymer composite materials and methods for their detection. Part 1. Defects of monolithic parts and multilayer structures of polymer composite materials. Kontrol'. Diagnostika, (4), pp. 23-32. [in Russian language] 5. Klyuev V. V. (Ed.), Sosnin F. R., Kovalev A. V. (2005). Non-destructive testing and diagnostics. Handbook. 3rd Ed. (revised and supplemented). Moscow: Mashinostroenie. [in Russian language] 6. Scott I. G., Scala C. M. (1982). A review of non-destructive testing of composite materials. NDT International, 15(2), pp. 75-86. 7. Stepanova L. N., Chernova V. V. (2017). Analysis of structural coefficients of acoustic emission signals during static loading of samples from carbon fiber reinforced plastic with impact damage. Kontrol'. Diagnostika, (6), pp. 34-41. doi: 10.14489/td.2017.06.pp.034-041 [in Russian language] 8. Stepanova L. N., Anohin G. G., Chernova V. V. (2016). Using the acoustic emission method for cyclic testing of samples from carbon fiber reinforced plastics with different types of laying monolayers. Kontrol'. Diagnostika, (2), pp. 66-74. [in Russian language] 9. Stepanova L. N., Ramazanov I. S., Chernova V. V. (2015). Wavelet analysis of the structure of acoustic emission signals for strength tests of samples from carbon plastic. Kontrol'. Diagnostika, (7), pp. 56-62. doi: 10.14489/td. 2016.02.pp.066-074 [in Russian language] 10. Boychuk A. S., Generalov A. S., Dikov I. A. (2017). Control of parts and structures from polymer composite materials using the technology of ultrasonic phased array. Aviatsionnye materialy i tekhnologii, (1), pp. 45-50. [in Russian language] 11. Karabutov A. A., Podymova N. B., Belyaev I. O. (2013). Investigation of the effect of porosity on ultrasonic attenuation in carbonfiber composites by laserultrasonic spectroscopy. Akusticheskiy zhurnal, 59(6), pp. 714-721. [in Russian language] 12. Murashov V. V., Rumyantsev V. F. (2008). Diagnosis of the composition and properties of polymer composites in details and structures. Kontrol'. Diagnostika, (8), pp. 13-17. [in Russian language] 13. Gemberg A. A., Prilutskiy M. A. (2016). Comparison of combined and separate-combined schemes of ultrasonic inspection of carbon plastics. Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie, (4), pp. 44-51. [in Russian language] 14. Boychuk A. S., Murashov V. V. Chertischev V. Yu., Dikov I. A. (2016). Determination of porosity in monolithic structures made of carbon plastic by ultrasonic echo method using laser excitation of ultrasonic vibrations. Tr. VIAM, (12), pp. 74-82. [in Russian language] 15. Podymova N. B., Karabutov A. A., Kobeleva L. I., Chernyshova T. A. (2012). Laser opticalacoustic method for analyzing the effect of the concentration of disperse fillers and porosity on local elastic moduli of metal matrix composite materials. Materialovedenie, (10), pp. 47-53. [in Russian language] 16. Podymova N. B., Karabutov A. A., Kobeleva L. I., Chernyshova T. A. (2013). Laser opticalacoustic method for measuring the local porosity of dispersed-filled metal matrix composite materials. Perspektivnye materialy, (3), pp. 81-87. [in Russian language] 17. Gusev V. E., Karabutov A. A. (1991). Laser optoacoustics. Moscow: Nauka. [in Russian language] 18. Truell R., El'baum Ch., Chik B. (1972). Ultrasonic methods in solid state physics. Moscow: Mir. [in Russian language] 19. Grigor'ev M. M., Kogan D. I., Tverdaya O. N., Panina N. N. (2013). Peculiarities of manufacturing PCM by the RFI method. Tr. VIAM, (4). [in Russian language] 20. Dushin M. I., Donetskiy K. I., Karavaev R. Yu. (2016). Determination of the reasons for the formation of porosity in the manufacture of PCM. Tr. VIAM, (6), pp. 68-78. [in Russian language] 21. Zharkiy S. M., Karabutov A. A., Pelivanov I. M. et al. (2003). Investigation of porous silicon layers by laser ultrasonic method. Fizika i tekhnika poluprovodnikov, 37(4), pp. 485-489. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2018.09.pp.048-053
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2018.09.pp.048-053
and fill out the form
.
|