Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2018, 12 декабрь (December)

DOI: 10.14489/td.2018.12.pp.038-043

Бабаджанов Л. С., Бабаджанова М. Л., Данелян А. Г.
ЧАСТОТНО-ИНТЕРФЕРЕНЦИОННЫЙ ТОЛЩИНОМЕР ПОЛУПРОВОДНИКОВЫХ ПОКРЫТИЙ
(с. 38-43)

Аннотация. Описан частотно-интерференционный толщиномер полупроводниковых покрытий, в котором точное наведение на поверхность покрытия и на границу раздела покрытия с основанием обеспечивается с помощью ахроматической интерференционной полосы в ближней инфракрасной области излучения, а измерение линейного размера толщины покрытия проводится путем измерений частоты импульсов света, формирование которых осуществляется вследствие поляризационного оптического «гашения» в генераторе импульсов света и зависит от оптической длины замкнутого контура оптической задержки. Показана принципиальная схема толщиномера, выполненная с использованием волоконной оптики. Данная схема толщиномера позволяет при соответствующих настройках проводить измерения толщины покрытия двумя независимыми методами: интерференционным и частотно-интерференционным. Ожидаемая погрешность толщиномера 5…6 нм при разрешающей способности 0,001…0,004 нм.

Ключевые слова:  толщиномер полупроводниковых покрытий, измерения, погрешность, интерференция, частота света, поляризация света, гашение света.

 

Babadzhanov L. S., Babadzhanova M. L., Danelyan A. G.
FREQUENCY-INTERFERENCE SEMICONDUCTOR COATING THICKNESS GAUGE
(pp. 38-43)

Abstract. The article describes the semiconductor coating thickness gauge based on frequency-interference method, according to which the precise focus on the coating surface and on the boundary of the coating and base is carried out by achromatic interference fringe in the near infrared region, and the measurement of the linear size of the coating thickness is carried out by measuring the frequency of light pulses, which is created by the light pulse generator and depends on the optical length of the closed loop of the optical delay. The light pulse generator is constructed on an optical closed-loop closed by an optical length, into which the radiation of monochromatic infrared light enters, when this radiation is directed to the points that limit the coating thickness. The coating thickness is one of the elements of the closed loop and is connected with other elements of the circuit. The frequency that is generated by the light pulse generator depends on the optical length of the closed loop of the optical delay, and varies depending on the reconfiguration of the achromatic strip from the surface of the coating to the boundary with the base, and corresponds to the coating thickness. A schematic diagram of the thickness gauge, made using fiber optics, is shown. This scheme of the thickness gauge allows, with the appropriate settings, to carry out measurements of the coating thickness by two independent methods: interference and frequency-interference.The expected accuracy of the thickness gauge is 5…6 nm with a resolution of 0.001…0.004 nm.

Keywords: semiconductor coating thickness gauge, measurement, error, interference, light frequency, light polarization, light blanking.

Рус

Л. С. Бабаджанов, М. Л. Бабаджанова, А. Г. Данелян (ФГУП «ВНИИМС», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

L. S. Babadzhanov, M. L. Babadzhanova, A. G. Danelyan (FGUP “VNIIMS”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Бабаджанов Л. С., Бабаджанова М. Л. Метрологическое обеспечение измерений толщины покрытий. Теория и практика. М.: Стандартинформ, 2004.
2. Гаврилюк В. К., Концевой Ю. А., Оксанич А. П., Тузовский А. М. Полуавтоматический телевизионный микроинтерферометр «Монослой-2» // Электронная промышленность. 1978. Вып. 66. С. 18 – 20.
3. Гавриленко В. П., Кузин А. Ю., Митюхляев В. Б. и др. Измерения толщины оксидной пленки на поверхности кремния электронно-зондовым методом // Измерительная техника. 2015. № 9.
4. Бабаджанов Л. С., Маградзе А. Р. Установка высшей точности для воспроизведения размера толщины покрытий // Метрологическая служба в СССР: вып. 3 / ВНИИКИ. М., 1988.
5. Дарзнек С. А., Желкобаев Ж., Календин В. В., Новиков Ю. А. Лазерный интерферометрический измеритель наноперемещений // Тр. Ин-та общей физики им. А. М. Прохорова (РАН). 2006. Т. 62. С. 14 – 37.
6. Данелян А. Г., Гарибашвили Д. И., Канкия Р. Р. и др. О некоторых возможностях улучшения метрологической прослеживаемости линейных измерений в нанометровом диапазоне // Измерительная техника. 2009. № 11.
7. Дмитриев С. А., Слепов Н. Н. Волоконно-оптическая техника: современное состояние и новые перспективы: сб. ст. 3-е изд. М.: Техносфера, 2010. 608 с.
8. Лиокумович Л. Б. Волоконно-оптические интерферометрические измерения. Ч. 1. Волоконно-оптические интерферометры. СПб.: Изд.-во Политехн. ун-та, 2007. 110 с.

Eng

1. Babadzhanov L. S., Babadzhanova M. L. (2004). Metrological assurance of coating thickness measurements. Theory and practice. Moscow: Standartinform. [in Russian language]
2. Gavrilyuk V. K., Kontsevoy Yu. A., Oksanich A. P., Tuzovskiy A. M. (1978). Semiautomatic television microinter-ferometer "Monolayer-2". Elektronnaya promyshlennost', 66, pp. 18-20. [in Russian language]
3. Gavrilenko V. P., Kuzin A. Yu., Mityuhlyaev V. B. et al. (2015). Measurement of the thickness of the oxide film on the surface of silicon by the electronprobe method. Izmeritel'naya tekhnika, (9). [in Russian language]
4. Babadzhanov L. S., Magradze A. R. Setting the highest accuracy to reproduce the size of the coating thickness. Metrological Service in the USSR: Issue 3. VNIIKI. Мoscow. [in Russian language]
5. Darznek S. A., Zhelkobaev Zh., Kalendin V. V., Novikov Yu. A. (2006). Laser interferometric nanodisplacement meter. Tr. Instituta obschey fiziki im. A. M. Prohorova (RAN), 62, pp. 14-37. [in Russian language]
6. Danelyan A. G., Garibashvili D. I., Kankiya R. R. et al. (2009). On some possibilities for improving the metrological traceability of linear measurements in the nanometer range. Izmeritel'naya tekhnika, (11). [in Russian language]
7. Dmitriev S. A., Slepov N. N. (2010). Fiberoptic technology: current state and new perspectives. 3rd ed. Moscow: Tekhnosfera. [in Russian language]
8. Liokumovich L. B. (2007). Fiber optic interferometric measurements. Part 1. Fiberoptic interferometers. Saint Petersburg: Izdatel'stvo Politekhnicheskogo universiteta. [in Russian language].

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.12.pp.038-043

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.12.pp.038-043

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования