Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2018, 11 November

DOI: 10.14489/td.2018.11.pp.040-051

 

Dikov I. A., Boychuk A. S., Dalin M. A., Chertishchev V. Yu., Generalov A. S.
THE CORRELATION BETWEEN STRENGTH CHARACTERISTICS, POROSITY AND ULTRASONIC TESTING DATA FOR FRP SPECIMENS MADE WITH AUTOCLAVE AND INFUSION TECHNOLOGIES
(pp. 40-51)

Abstract. The strength characteristics of fiber reinforced plastics (FRP) as compressive and shear strength are depends on material micro defects (for example porosity) existence. The research results of correlation communication between ultrasonic testing data, strength characteristics and porosity contents at FRP specimens made with autoclave and infusion (RTM) technologies are present at this work. Two types of CFRP were researched: the first type based on ELUR-P carbon fabric and VK-36R adhesive made with autoclave technology, the thickness was 5,5 and 8,5 mm, the second type based on ELUR-P unidirectional carbon tape and VSE-21 binding made with infusion technology, the thickness was 3,0 and 5,3 mm. Correlation dependencies between porosity, compressive and shear strength, low-cyclic fatigue and back wall echo amplitude decrease for CFRP specimens are presented and analyzed. These dependencies may be used for definition of porosity influence to CFRP ELUR-P/VK-36R and ELUR-P/VSE-21 strength properties and for choosing of the rejection criteria based on strength decreasing during ultrasonic testing.

Keywords: FRP, CFRP, porosity, void, ultrasonic testing, ultrasonic fluctuation, strength, compressive strength, interlaminar shear strength, low-cycle fatigue (LCF).

 

I. A. Dikov, A. S. Boychuk, M. A. Dalin, V. Yu. Chertishchev, A. S. Generalov (FSUE “VIAM” SRC of RF, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

 

 

1. Kablov E. N. (2002). Aviation Materials in the XXI century. Perspectives and tasks. Aviation materials. Moscow: MISIS – VIAM, pp. 23-47. [in Russian language]
2. Kablov E. N. (2006). Structural and functional materials - the basis of economic and scientific-technical development of Russia. Voprosy materialovedeniya, (1), pp. 64- 67. [in Russian language]
3. Klyueva V. V. (Ed.), Ermolov I. N., Lange Yu. V. (2006). Non-destructive testing: a textbook: in 8 volumes. Vol. 3. Ultrasound control. 2nd ed. Moscow: Mashinostroenie. [in Russian language]
4. Murashov V. V. (2016). Monitoring and diagnostics of multilayer structures made of polymer composite materials by acoustic methods: monograph. Moscow: ID «Spektr». [in Russian language]
5. Generalov A. S., Murashov V. V., Dalin M. A., Boychuk A. S. (2012). Diagnostics of polymer composites by ultrasonic reverberation-through method. Aviatsionnye materialy i tekhnologii, 22(1), pp. 42-47. [in Russian language]
6. Generalov A. S., Murashov V. V., Dalin M. A., Boychuk A. S. (2013). Determination of the strength of structural elements of carbon fiber in the repair and operation of aviation equipment products by the ultrasonic reverberation-through method. Remont. Vosstanovlenie. Modernizatsiya, (8), pp. 4-7. [in Russian language]
7. Generalov A. S., Murashov V. V., Dalin M. A., Boychuk A. S. (2012). Determination of strength of carbon plastics by the ultrasonic reverberation-through method. Vse materialy. Entsiklopedicheskiy spravochnik, (11), pp. 47-53. [in Russian language]
8. Murashov V. V., Mishurov K. S. (2015). Evaluation of the strength characteristics of carbon fiber acoustics. Aviatsionnye materialy i tekhnologii, 34(1), pp. 81-85. [in Russian language] DOI: 10.18577/2071-9140-2015-0-1-81-85.
9. Murashov V. V. (2012). Determination of physic-mechanical characteristics and composition of polymer composite materials by acoustic methods. Aviatsionnye materialy i tekhnologii, (S), pp. 465-475. [in Russian language]
10. Murashov V. V., Mishurov K. S., Sorokin K. V. (2011).Evaluation of the strength of carbon plastics in monolithic structures under shear and compression by non-destructive testing. Kontrol'. Diagnostika, (10), pp. 31-36. [in Russian language]
11. Dalin M. A., Generalov A. S., Boychuk A. S., Lozhkova D. S. (2013). The main trends in the development of acoustic methods of NC. Aviatsionnye materialy i tekhnologii, (1), pp. 64-69. [in Russian language]
12. Trifonova S. I., Generalov A. S., Dalin M. A. (2016). Modern technologies and means of shadow ultrasonic testing of polymer composite materials. V mire NK,19(1), pp. 31- 35. [in Russian language]
13. Birt E. A., Smith R. A. (2004). A review of NDE methods for porosity measurement in fibre-reinforced polymer composites. Insight, 46(11), pp. 681-686. DOI: 10.1784/insi.46.11.681.52280.
14. Kablov E. N. (2015). Innovative developments of FSUE “VIAM” SSC RF for the implementation of the “Strategic directions of development of materials and technologies for their processing for the period up to 2030”. Aviatsionnye materialy i tekhnologii, 34(1), pp. 3-33. [in Russian language] DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Thompson D. O. (Ed.), Chimenti D. E., Uhl K. M., Lucht B., Jeong H., Hsu D. K. (1988). Mechanical strength degradation of graphite fibre reinforced thermoset composites due to porosity. Review of Progress in QNDE, 7B, pp. 1075-1082.
16. Stone D. E. W., Clarke B. (1975). Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Non-Destructive Testing, 8(3), pp. 137-145. DOI: 10.1016/0029-1021(75)90023-7.
17. Liu L., Zhang B. M., Wang D. F., Wu Z. J. (2006). Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures, 73(3), pp. 303-309. DOI: 10.1016/j.compstruct.2005.02.001.
18. Costa M. L., Almeida F., Rezende M. C. (2001). The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Composite Science and Technology, 61(14), pp. 2101-2108. DOI: 10.1016/s0266-3538(01)00157-9.
19. Dushin M. I., Hrul'kov A. V., Karavaev R. Yu. (2015). Parameters affecting the formation of porosity in PCM products manufactured by nonautoclave methods (review). Tr. VIAM, (2). Available at: http://www.viam-works.ru (Accessed: 01.02.2018). DOI: 10.18577/2307-6046-2015-0-2-10-10. [in Russian language]
20. Zhu. Hong-yan, L. I. Di-hong, Zhang Dongxing et al. (2009). Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates. Transactions of Nonferrous Metals Society of China, 19, Suppl. 2, pp. s470-s475. DOI: 10.1016/S1003-6326(10)60091-X.
21. Boychuk A. S., Chertischev V. Yu., Dikov I. A. (2017). Production of test samples of carbon fiber with different porosity for the development of methods for assessing the porosity of the non-destructive method. Tr. VIAM, (1), pp. 92-98. Available at: http://www.viam-works.ru (Accessed: 01.02.2018). DOI: 10.18577/2307-6046-2017-0-1-11-11. [in Russian language]
22. Dikov I. A., Boychuk A. S. (2017). Methods for determining the volume fraction of pores in polymer composite materials using ultrasonic methods of non-destructive testing (review). Tr. VIAM, (2), pp. 80-95. Available at: http://www.viam-works.ru (Accessed: 01.02.2018). DOI: 10.18577/2307-6046-2017-0-2-10-10. [in Russian language]
23. Reynolds W. N., Smith R. L. (1984). Ultrasonic wave attenuation spectra in steels. Journal of Physics D: Applied Physics, 17, pp. 109-116. DOI: 10.1088/0022-3727/17/1/015.
24. Suhorukov V. V. (Ed.), Ermolov I. N., Aleshin N. P., Potapov A. I. (1991). Non-destructive testing in 5 books. Book 2. Acoustic methods of control: a practical. Moscow: Vysshaya shkola. [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.11.pp.040-051

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования