Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 11 | 2024
2018, 12 December

DOI: 10.14489/td.2018.12.pp.046-052

 

Palamar I. N., Zhukov A. A.
EVALUATION OF COMPLEX SHAPE GLOBULAR INCLUSION CHARACTERISTICS IN MATERIAL BASED ON IMAGE AUTOMATIC SEGMENTATION
(pp. 46-52)

Abstract. An approach to the estimation of the characteristics of complex shape globular inclusion based on the normalized compactness and fractal dimension is proposed. The calcula-tion of the parameters inclusions values on the raster representation is implemented on the basis of the method of automatic image segmentation by the method of growing and merge regions. The description of the features of the segmentation method, providing automatic selection of complex shape objects of on the image, is given. The characteristics of graphite inclusions in high-strength cast iron were experimentally researched, and statistical estimates of the normalized compactness and fractal dimension of globular inclusions were obtained for the group of microsection images. The possibility of more informative analysis of the structure quality is shown.

Keywords: complex shape globular inclusion, control automation, microstructure evaluation, normalized compactness, fractal dimension, segmentation by growing and merging regions.

 

I. N. Palamar, A. A. Zhukov (State Educational Institution Higher Education “Soloviev Rybinsk State Aviation Technical University”, Russia, Rybinsk) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Belyakov A. I. (Ed.), Zhukov A. A., Matstsarelli D., Belyakov A. A. (2010). Production of castings of high-strength nodular cast iron. Moscow: Mashinostroenie. [in Russian language]
2. Nodular cast iron for castings. Stamps. (2004). Ru Standard No. GOST 7293–85. Moscow: Izdatel'stvo standartov. [in Russian language]
3. Sherman A. D., Zhukov A. A. (1991). Cast Iron: A Handbook. Moscow: Metallurgiya. [in Russian language]
4. Volchok I. P. (1993). Resistance to the destruction of steel and cast iron. Moscow: Metallurgiya. [in Russian language]
5. Castings from cast iron with various forms of graphite. Methods for determining the structure. (2005). Ru Standard No. GOST 3443–87. Moscow: Izdatel'stvo standartov. [in Russian language]
6. Saltykov S. A. (1976). Stereometric metallography (Stereology of metallic materials): a textbook for universities. Moscow: Metallurgiya. [in Russian language]
7. Bernshteyn M. L., Rahshtadt A. G. (1983). Materials science and heat treatment of steel: a handbook. Vol. 1. Test and research methods. Moscow: Metallurgiya. [in Russian language]
8. Belyakov A. I., Belyakov A. A., Palamar' I. N. et al. (2007). Automated system for analyzing the microstructure of alloys. New materials, advanced technological processes and quality management in the blank production: materials of the Russian scientific and technical conference. Rybinsk: RGATA, (2), pp. 218-227. [in Russian language]
9. Chubov A. A., Zhukov A. A., Vishnyakov V. A. (2007). Metallographic analysis of alloys using MetAn analyzer software based on contour-structural segmentation. Zagotovitel'nye proizvodstva v mashinostroenii, (8), pp. 50-54. [in Russian language]
10. Image analyzer SIAMS 700. Available at: https://www.siams.com/products/siams700. (Accessed: 31.01.2018.)
11. Methods of analysis SIAMS 800. Available at: https://www.siams.com/products/apps. (Accessed: 01.02.18.)
12. Petrushina A. G. (2017). Investigation of inelastic phenomena in graphitecontaining systems and modeling of the damping ability and elastic properties of cast iron. Tula. [in Russian language]
13. Ivanova V. S., Balankin A. S., Bunin I. Zh. et al. (1994). Synergetics and fractals in materials science. Moscow: Nauka. [in Russian language]
14. Palamar' I. N., Sizov P. V. (2010). A method of image segmentation with the help of areas growing and multiscale analisys. Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev. Krasnoyarsk, (7), pp. 111-116.
15. Palamar' I. N., Sizov P. V. (2012). Method of segmentation of raster images based on growing and merging regions. Ru Patent No. 2440609. Russian Federation. [in Russian language ]
16. Palamar' I. N., Sizov P. V. (2010). Software environment for image segmentation based on the methods of growing regions and wavelet transforms Certificate of state registration of the computer program No. 2010614091. Russian Federation. [in Russian language]
17. Aleksanina M. G., Karnatskiy A. Yu. (2008). Comparison of the spatial characteristics of the fields of sea ice and clouds according to the AVHRR / NOAA visible channel using the example of the Sea of Okhotsk. The 6th All-Russian Open Annual Conference "Modern Problems of Remote Sensing of the Earth from Space". IKI RAN, Moscow, pp. 299-302. [in Russian language]
18. Besicovitch A. S. (1929). On Linear Sets of Points of Fractional Dimensions. Mathematische Annalen, 101(1), pp. 161-193.

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.12.pp.046-052

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования