DOI: 10.14489/td.2019.02.pp.032-043
Маневич Е. Я., Махов В. Е., Потапов А. И. МОНИТОРИНГ РАЗМЕРОВ И ДЕФОРМАЦИЙ ПОРУЧНЕЙ ЭСКАЛАТОРА ЦИФРОВЫМ РЕГИСТРАТОРОМ СВЕТОВОГО ПОЛЯ (c. 32-43)
Аннотация. Рассмотрены вопросы диагностики технического состояния поручней эскалатора в динамическом состоянии на базе оптико-электронной системы (ОЭС) светового поля (СП). Предложена схема регистрации поручней эскалатора оптическим регистратором СП. Разработаны методика и алгоритмы мониторинга изменения основных геометрических параметров поручней на основе анализа получаемых данных с регистратора СП путем применения методов обработки изображений, полученных из файла СП. Предложена практическая реализация разработанных алгоритмов на платформе аппаратно-программных средств фирмы National Instruments. Показано, что точность результатов определения геометрических характеристик поручневого полотна с использованием предлагаемых решений обеспечивает возможность диагностики и мониторинга поручней эскалатора в процессе эксплуатации эскалатора.
Ключевые слова: поручень эскалатора, оптико-электронная система, ОЭС, световое поле, СП, непрерывное вейвлет-преобразование, НВП.
Manevich E. Ya., Makhov V. E., Potapov A. I. MONITORING THE DIMENSIONS AND DEFORMATIONS OF ESCALATOR HANDRAILS BY A DIGITAL LIGHT FIELD RECORDER (pp. 32-43)
Abstract. The problems of diagnostics of the technical support of the handrails of an escalator in a dynamic state based on an optical-electronic system (OES) of the light field (LF) are considered. A scheme for registering escalator handrails was proposed by the light field recorder. The methodology and algorithms for monitoring changes in the basic geometric parameters were developed based on the analysis of the data obtained from the light field recorder by applying various processing methods. A practical implementation of the developed algorithms on the hardware and software platform of the National Instruments company is proposed. It is shown that the accuracy of the results of determining the geometric characteristics of the handrail cloth using the proposed solutions provides the ability to diagnose and monitor the operational state of the escalator handrails.
Keywords: escalator handrail, optoelectronic system, OES, light field, LF, continuous wavelet transformation, CWT.
Е. Я. Маневич (ЗАО «Эскомстроймонтаж-сервис», Санкт-Петербург, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. Е. Махов (Военно-космическая академия им. А. Ф. Можайского, Санкт-Петербург, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. И. Потапов (Санкт-Петербургский горный университет, Санкт-Петербург, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. Ya. Manevich (JSC “Es-service”, St. Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. E. Makhov (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. I. Potapov (Saint-Petersburg Mining University, St. Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Поминов И. Н. Эскалаторы метрополитена. Устройство, обслуживание и ремонт. М.: Транспорт, 1993. 320 с. 2. Махов В. Е., Певзнер Б. З. Влияние типа структуры на свойства гетерогенных материалов // Известия Академии наук СССР. Неорганические материалы. 1985. Т. 21. С. 1599. 3. Махов Е. М. Потапов А. И., Махов В. Е. Прикладная оптика: учеб. пособие. СПб.: СЗТУ, 2004. 348 с. 4. Грузман И. С., Киричук В. С., Косых В. П. и др. Цифровая обработка изображений в информационных системах: учеб. пособие. Новосибисрк: Изд-во НГТУ, 2000. 168 с. 5. Бринкманн Л. Времяпролетные камеры: 2D- и 3D-изображения за один кадр // Системы безопасности. 2016. № 2. С. 112–113. 6. Ng R. Digital light field photography: A dissertation submitted to the department of computer science and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy, 2006. 187 p. 7. Махов В., Потапов А., Закутаев А. Принципы работы цифровых камер светового поля с массивом микролинз // Компоненты и технологии. 2018. № 1(198). С. 14 – 20. 8. 3D Light Field Camera Technology / Raytrix GmbH, Germany. [Электронный ресурс]. URL: http://www.isolutions.com.sg/Raytrix.pdf (доступ свободный). 9. Махов В. Е., Потапов А. И., Шалдаев С. Е. Контроль геометрических параметров изделий методом светового поля // Контроль. Диагностика. 2017. № 7. С. 12 – 25. 10. Махов В. Е., Потапов А. И. Анализ эффективности оптического метода контроля капилляров. Теоретические основы оптического контроля капилляров // Справочник. Инженерный журнал с приложением. 2013. № 7(196). С. 48 – 56. 11. Махов В. Е., Потапов А. И. Выделение информационных полей формы и дефектов поверхности методом регистрации светового поля // Контроль. Диагностика. 2018. № 3. С. 28 – 38. 12. Maksarov V. V., Makhov V. E. Studying parameters and quality of thread by optical light field recorder // AER-Advances in Engineering Research. 2017. V. 1. Р. 452 – 457. 13. Bok Y., Jeon H.-G., Kweon I. S. Geometric Calibration of Micro-Lens-Based Light-Field Cameras using Line Features // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39. Is. 2. P. 287 – 300. 14. Perwass C., Wietzke L. Single lens 3D-camera with extended depth-of-field // Proc. SPIE. 2012. V. 8291. P. 8 – 15. 15. Эскалатор, используемый в супермаркете. Описание. [Электронный ресурс]. URL: http://www.passenger-lifts.com/escalator/electric-escalator/escalator-used-in-supermarket.html (доступ свободный). 16. Тревис Дж., Кринг Дж. LabVIEW для всех. М.: ДМК Пресс, 2008. 880 с. 17. Визильтер Ю. В., Желтов С. Ю., Князь В. А. и др. Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision. М.: ДМК Пресс, 2007. 464 с. 18. Махов В., Широбоков В., Закутаев А. Построение систем технического зрения на базе компьютерных технологий National Instruments // Control Engineering Россия. 2018. № 4(76). С. 62 – 69. 19. Махов В. Е., Потапов А. И., Шалдаев С. Е. Исследование границ изображения методом выделения контраста с использованием оптико-электронной системы. Ч. 1. Научно-методические принципы контроля границ изображения методом выделения контраста // Контроль. Диагностика. 2017. № 10. С. 44 – 51. 20. Махов В. Е., Потапов А. И., Шалдаев С. Е. Исследование границ изображения методом выделения контраста с использованием оптико-электронной системы. Ч. 2. Экспериментальные модельные исследования границ изображения на основе вейвлет-преобразования // Контроль. Диагностика. 2017. № 11. С. 4 – 11. 21. Махов В. Е. Исследование алгоритмов вейвлет- преобразования для определения координат световых меток // Вопросы радиоэлектроники. Сер. Техника телевидения. Вып. 2. СПб.: ФГУП НИИТ, 2012. С. 78 – 89.
1. Pominov I. N. (1993). Metro escalators. Device, maintenance and repair. Moscow: Transport. [in Russian language] 2. Mahov V. E., Pevzner B. Z. (1985). Effect of structure type on the properties of heterogeneous materials. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy, 21, p. 1599. [in Russian language] 3. Mahov E. M. Potapov A. I., Mahov V. E. (2004). Applied Optics: textbook. St. Petersburg: SZTU. [in Russian language] 4. Gruzman I. S., Kirichuk V. S., Kosyh V. P. et al. (2000). Digital image processing in information systems: textbook. Novosibisrk: Izdatel'stvo NGTU. [in Russian language] 5. Brinkmann L. (2016). Time-of-flight cameras: 2D and 3D images in one frame. Sistemy bezopasnosti, (2), pp. 112-113. [in Russian language] 6. Ng R. (2006). Digital light field photography: A dissertation submitted to the department of computer science and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy. 7. Mahov V., Potapov A., Zakutaev A. (2018). Principles of operation of digital cameras light field with an array of microlenses. Komponenty i tehnologii, 198(1), pp. 14-20. [in Russian language] 8. 3D Light Field Camera Technology. Raytrix GmbH, Germany. Available at: http:// www.isolutions.com.sg/ Raytrix.pdf 9. Mahov V. E., Potapov A. I., Shaldaev S. E. (2017). Control of the image function optoelectronic system conversion method in image contrast. Kontrol'. Diagnostika, (7), pp. 12-25. doi: 10.14489/td.2017.07.pp.012-024 [in Russian language] 10. Mahov V. E., Potapov A. I. (2013). Analysis of the efficiency of the optical method of control capillaries. theoretical basis of the optical control of capillaries. Spravochnik. Inzhenernyi zhurnal, 196(7), pp. 48-56. [in Russian language] 11. Mahov V. E., Potapov A. I. (2018). Selection of information fields forms and defects of the surface by the method of registration light field. Kontrol'. Diagnostika, (3), pp. 28-38. doi: 10.14489/td.2018.03.pp.028-038 [in Russian language] 12. Maksarov V. V., Makhov V. E. (2017). Studying parameters and quality of thread by optical light field recorder. AER-Advances in Engineering Research, 1, pp. 452-457. 13. Bok Y., Jeon H.-G., Kweon I. S. (2017). Geometric Calibration of Micro-Lens-Based Light-Field Cameras using Line Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), pp. 287-300. 14. Perwass C., Wietzke L. (2012). Single lens 3D-camera with extended depth-of-field. Proc. SPIE, 8291,pp. 8-15. 15. Escalator operating in the supermarket. Description. Available at: http://www.passenger-lifts.com/escalator/ electric-escalator /escalator-used-in-super market.html 16. Trevis Dzh., Kring Dzh. (2008). LabVIEW for everyone. Moscow: DMK Press. [in Russian language] 17. Vizil'ter YU. V., Zheltov S. YU., Knyaz' V. A. et al. (2007). Processing and analysis of digital images with examples on LabVIEW IMAQ Vision. Moscow: DMK Press. [in Russian language] 18. Mahov V., Shirobokov V., Zakutaev A. (2018). Building vision systems based on computer technology National Instruments. Control Engineering Russia, 76(4), pp. 62-69. [in Russian language] 19. Mahov V. E., Potapov A. I., Shaldaev S. E. (2017). Study of the border limits by the method of distribution of contrast using the optical-electronic system. Part 1. Scientific and methodological principles of image border monitoring using the method of contrast highlighting. Kontrol'. Diagnostika, (10), pp. 44-51. doi: 10.14489/td.2017.10. pp.044-051 [in Russian language] 20. Mahov V. E., Potapov A. I., Shaldaev S. E. (2017). Study of the borders of the image with highlighting contrast method using the optical-electronic system. Part 2. Experi-mental model studies of the image boundaries based on the wavelet transform. Kontrol'. Diagnostika, (11), pp. 4-11. doi: 10.14489/td.2017.11.pp.004-011 [in Russian language] 21. Mahov V. E. (2012). Study of wavelet transform algorithms to determine the coordinates of light labels. Voprosy radioelektroniki. Seriya Tehnika televideniya, 2. St. Petersburg: FGUP NIIT, pp. 78-89. [in Russian language].
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2019.02.pp.032-043
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2019.02.pp.032-043
and fill out the form
.
|