DOI: 10.14489/td.2019.02.pp.022-030
Федотов М. Ю., Будадин О. Н., Васильев С. А., Медведков О. И., Козельская С.О. ВЛИЯНИЕ ИНТЕГРАЦИИ ВОЛОКОННО-ОПТИЧЕСКИХ ДАТЧИКОВ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ (c. 22-30)
Аннотация. Приведены результаты исследований влияния интеграции волоконно-оптических датчиков на упругопрочностные свойства полимерных композиционных материалов, изготавливаемых методами автоклавного формования и вакуумной инфузии. Экспериментально подтверждено, что механические свойства углепластиков с интегрированными датчиками находятся на уровне свойств углепластиков без датчиков в рамках разброса свойств, характерного для данного композита.
Ключевые слова: полимерный композиционный материал, волоконно-оптический датчик, интеграция, волоконная брэгговская решетка, механические свойства, встроенный контроль.
Fedotov M. Yu., Budadin O. N., Vasil’ev S. A., Medvedkov O. I., Kozelskaya S. O. THE EFFECT OF INTEGRATION OF FIBER OPTIC SENSORS ON THE MECHANICAL PROPERTIES OF POLYMER COMPOSITE MATERIALS (pp. 22-30)
Abstract. This article describes the results of studies of the impact of the integration of fiber optic sensors (FOS) on the elastic-strength properties of polymer composite materials (PCM), produced by autoclave processing and vacuum infusion. Tensile tests were carried out on PCM specimens based on a unidirectional carbon tape and an epoxy polymer matrix with a unidirectional and quasi-isotropic installation of reinforcing filler. The obtained values of the variation coefficients of tensile strength for unidirectional laying without FOS were 6 %, with FOS – 7 %, for the case of quasi-isotropic stacking – without FOS – 9%, with FOS – 8 %. Tests for tensile and compression of carbon fiber specimens based on equal strength carbon fabric and epoxy polymer matrix were carried out. The experimental values of the coefficients of variation of the tensile strength of specimens without FOS were 5 %, with FOS – 6 %, for the case of compression without FOS – 9 %, with FOS – 8 %. Thus, it has been experimentally confirmed that the introduction of FOS does not lead to a decrease in the mechanical properties of carbon-reinforced plastics, which is explained by the low volumetric content of FOS in the material, as well as by the high adhesive properties of the FOS-PCM system, which ensure the combined work of the FOS with the material components.
Keywords: polymer composite material, fiber optic sensor, integration, fiber Bragg grating, mechanical properties, internal control.
М. Ю. Федотов (ЗАО «НИИИН МНПО «Спектр», Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
О. Н. Будадин (АО «ЦНИИСМ», г. Хотьково, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. А. Васильев, О. И. Медведков (НЦВО РАН, Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. О. Козельская (АО «ЦНИИСМ», г. Хотьково, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. Yu. Fedotov (LIRA soft, LLC, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin (Central Research Institute for Special Machinery, Joint Stock Company, Khotkovo, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. A. Vasil’ev, O. I. Medvedkov (Fiber Optics Research Center of the Russian Academy of Sciences (FORC RAS), Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozelskaya (Central Research Institute for Special Machinery, Joint Stock Company, Khotkovo, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Гончаров В. А., Федотов М. Ю., Шиенок А. М. и др. Моделирование инфузионных технологий изготовления слоистых полимерных композиционных материалов // Все материалы. Энциклопедический справочник. 2013. № 1. С. 43 – 49. 2. Гончаров В. А., Сорокин К. В., Федотов М. Ю., Раскутин А. Е. Моделирование технологического процесса изготовления методом инфузии ПКМ на основе связующего ВСЭ-21 и ткани TENAX-E STYLE 450 // Тр. ВИАМ. 2014. № 10. С. 4. 3. Федотов М. Ю. Концепции создания и тенденции развития интеллектуальных материалов (обзор) // Авиационные материалы и технологии. 2015. № 1(34). С. 71 – 80. 4. Федотов М. Ю., Сорокин К. В., Гончаров В. А. и др. Возможности сенсорных систем и интеллектуальных ПКМ на их основе // Все материалы. Энциклопедический справочник. 2013. № 2. С. 18 – 23. 5. Kojovic A., Zivkovic I., Brajovic L. et al. Laminar composite materials damage monitoring by embedded optical fibers Fracture of Nano and Engineering // Materials and Structures. 2006. P. 1035–1036. 6. Damage detection system using optical fibre sensors: pаt. 2007232371 JP; publ. 13.06.07. 7. Damage detection system for structural composite material and method of detecting damage to structural composite material: pаt. 2005098921 JP; publ. 14.04.05. 8. Integrated system and methods for management and monitoring of vehicles: pаt. 3096123 EP; publ. 23.11.2016. 9. Di Sante R., Donati L. Strain monitoring with embedded Fiber Bragg Gratings in advanced composite structures for nautical applications // Measurement. 26 March 2013. 10. Федотов М. Ю., Шиенок А. М., Мухаметов Р. Р., Гуляев И. Н. Исследование границы раздела полимерных матриц с оптическими световодами в информкомпозитах // Вопросы материаловедения. 2017. № 1. С. 155 – 168. 11. Федотов М. Ю., Бухаров С. В., Мухаметов Р. Р. Исследование защитных покрытий волоконно-оптических сенсоров, предназначенных для интеграции в полимерные композиционные материалы // Конструкции из композиционных материалов. 2017. № 4(148). С. 61 – 67. 12. Мухаметов Р. Р., Ахмадиева К. Р., Деев И. С., Махсидов В. В. Защитное покрытие для волоконно-оптических датчиков // Упрочняющие технологии и покрытия. 2016. № 9(141). С. 29 – 34. 13. Takeda N., Okabe Y., Kuwahara J. et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing // Composites Science and Technology. 2005. V. 65. P. 2575 – 2587. 14. Способ контроля характеристик конструкции из композиционного материала: пат. 2309392 RU; опубл. 15.02.2006. 15. Способ определения мест предразрушения конструкций: пат. 2316757 RU; опубл. 10.02.2008. 16. Способ измерения деформации конструкции из композиционного материала: пат. 2427795 RU; опубл. 27.08.2011. 17. Панель из полимерного композиционного материала с молниезащитным покрытием: пат. 2588552 RU; опубл. 27.06.2016. 18. Система контроля технического состояния конструкций летательного аппарата (варианты): пат. 2544028 RU; опубл. 10.03.2015. 19. Устройство для индикации срыва потока на лопастях несущего винта вертолета: пат. 2555258 RU; опубл. 04.06.2015. 20. Защитные покрытия различного назначения места установки датчиков на поверхности конструкции: пат. 181835 RU; опубл. 26.07.2018. 21. Способ технической диагностики и ремонта самолетов и вертолетов: пат. 2423296 RU; опубл. 10.07.2011. 22. Композиционный бак для агрессивной жидкости повышенной живучести с волоконно-оптической матрицей: пат. 2305653 RU; опубл. 10.09.2007. 23. Композитный бак повышенной живучести с волоконно-оптической системой: пат. 2309104 RU; опубл. 27.10.2007. 24. Способ прогнозирования ресурсных характеристик материалов: пат. 2282174 RU; опубл. 20.08.2006. 25. Способ определения технического состояния материалов элементов конструкции: пат. 2204817 RU; опубл. 20.05.2003. 26. High density structural health monitoring system and method: pat. 8447530 US; publ. 21.05.2013. 27. Composite structure having an embedded sensing system: pat. 2013048841 US; publ. 28.02.2013. 28. Change mapping for structural health monitoring: pat. 8412470 US; publ. 02.04.2013. 29. Compensating for temperature effects in a health monitoring system: pat. 8127610 US; publ. 06.03.2012. 30. Sensors and systems for structural health monitoring: pat. 7117742 US; publ. 10.10.2006. 31. Robust damage detection: pat. 7930128 US; publ. 16.04.2007. 32. System and method for self-contained structural health monitoring for composite structures: pat. 7860664 US; publ. 28.12.2010. 33. Embeddable polarimetric fiber optic sensor and method for monitoring of structures: pat. 7605923 US; publ. 20.10.2009. 34. Optical fiber sensor system: pat. 6204920 US; publ. 20.03.2001. 35. Self-processing integrated damage assessment sensor for structural health monitoring: pat. 7174255 US; publ. 06.02.2007. 36. Устройство выхода волоконно-оптического датчика из композита: пат. 179119 RU; опубл. 26.04.2018 г. 37. Медведков О. И., Королев И. Г., Васильев С. А. Запись волоконных брэгговских решеток в схеме с интерферометром Ллойда и моделирование их спектральных свойств // Препринт НЦВО ИОФ РАН. 2004. № 6.
1. Goncharov V. A., Fedotov M. Yu., Shienok A. M. et al. (2013). Simulation of infusion technologies for the manufacturing of layered polymer composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, (1), pp. 43-49. [in Russian language] 2. Goncharov V. A., Sorokin K. V., Fedotov M. Yu., Raskutin A. E. (2014). Simulation of the manufacturing process using the PCM infusion method based on the VSE-21 binder and TENAX-E STYLE 450 fabric. Trudy VIAM, (10), p. 4. [in Russian language] 3. Fedotov M. Yu. (2015). Making concepts and development trends of intelligent materials (review). Aviatsionnye materialy i tehnologii, 34(1), pp. 71-80. [in Russian language] 4. Fedotov M. Yu., Sorokin K. V., Goncharov V. A. et al. (2013). Sensor systems abilities and intelligent PCM made on their basis. Vse materialy. Entsiklopedicheskiy spravochnik, (2), pp. 18-23. [in Russian language] 5. Kojovic A., Zivkovic I., Brajovic L. et al. (2006). Laminar composite materials damage monitoring by embedded optical fibers Fracture of Nano and Engineering. Materials and Structures, pp. 1035-1036. 6. Damage detection system using optical fibre sensors. (2007). Pаt. 2007232371 JP. 7. Damage detection system for structural composite material and method of detecting damage to structural composite material. (2005). Pаt. 2005098921 JP. 8. Integrated system and methods for management and monitoring of vehicles. (2016). Pаt. 3096123 EP. 9. Di Sante R., Donati L. (2013). Strain monitoring with embedded Fiber Bragg Gratings in advanced composite structures for nautical applications. Measurement. 10. Fedotov M. Yu., Shienok A. M., Muhametov R. R., Gulyaev I. N. (2017). Study of the boundary between polymer matrices and optical lights in information composites. Voprosy materialovedeniya, (1), pp. 155-168. [in Russian language] 11. Fedotov M. Yu., Buharov S. V., Muhametov R. R. (2017). Study of protective coatings of fiber-optic sensors intended for integration into polymer composite materials. Konstruktsii iz kompozitsionnyh materialov, 148(4), pp. 61- 67. [in Russian language] 12. Muhametov R. R., Ahmadieva K. R., Deev I. S., Mahsidov V. V. (2016). Protective coating for fiber optic sensors. Uprochnyayuschie tehnologii i pokrytiya, 141(9), pp. 29-34. [in Russian language] 13. Takeda N., Okabe Y., Kuwahara J. et al. (2005). Development of smart composite structures with smalldiameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology, 65, pp. 2575-2587. 14. Testing methods of the composite material structure characteristics. (2006). Ru Patent No. 2309392. Russian Federation. [in Russian language] 15. Method for determining prefracture points of the structures. (2008). Ru Patent No. 2316757. Russian Federation. [in Russian language] 16. A method of measuring the deformation of a composite structure. (2011). Ru Patent No. 2427795. Russian Federation. [in Russian language] 17. Panel of polymer composite material with lightning-resistant coating. (2016). Ru Patent No. 2588552. Russian Federation. [in Russian language] 18. Monitoring system of the technical condition of the aircraft structures (options). (2015). Ru Patent No. 2544028. Russian Federation. [in Russian language] 19. Device for indicating stall failure on helicopter rotor blades. (2015). Ru Patent No. 2555258. Russian Federation. [in Russian language] 20. Protective coatings for various purposes of the in-stallation of sensors on the surface of the structure. Ru Patent No. 181835. Russian Federation. [in Russian language] 21. Method for technical diagnostics and repair of airplanes and helicopters. (2011). Ru Patent No. 2423296. Russian Federation. [in Russian language] 22. Composite tank for aggressive fluid of increased vitality with fiber-optic matrix. (2007). Ru Patent No. 2305653. Russian Federation. [in Russian language] 23. Composite tank for aggressive fluid of increased vitality with fiber-optic system. (2007). Ru Patent No. 2309104. Russian Federation. [in Russian language] 24. A method for predicting the resource characteristics of materials. (2006). Ru Patent No. 2282174. Russian Feder-ation. [in Russian language] 25. The method for determining the technical condition of structural elements materials. (2003). Ru Patent No. 2204817. Russian Federation. [in Russian language] 26. High density structural health monitoring system and method. (2013). Pat. 8447530 US. USA. 27. Composite structure having an embedded sensing system. (2013). Pat. 2013048841 US. USA. 28. Change mapping for structural health monitoring. (2013). Pat. 8412470 US. USA. 29. Compensating for temperature effects in a health monitoring system. (2012). Pat. 8127610 US. USA. 30. Sensors and systems for structural health monitoring. (2006). Pat. 7117742 US. USA. 31. Robust damage detection. (2007). Pat. 7930128 US. USA. 32. System and method for self-contained structural health monitoring for composite structures. (2010). Pat. 7860664 US. USA. 33. Embeddable polarimetric fiber optic sensor and method for monitoring of structures. (2009). Pat. 7605923 US. USA. 34. Optical fiber sensor system. (2001). Pat. 6204920 US. USA. 35. Self-processing integrated damage assessment sensor for structural health monitoring. (2007). Pat. 7174255 US. USA. 36. The output device of the fiber-optic sensor out of the composite. (2018). Ru Patent 179119. Russian Federation. [in Russian language] 37. Medvedkov O. I., Korolev I. G., Vasil'ev S. A. (2004). Recording of fiber Bragg gratings in a circuit with a Lloyd interferometer and modeling their spectral properties. Preprint of Fiber Optics Research Center of RAS, (6). [in Russian language].
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2019.02.pp.022-030
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2019.02.pp.022-030
and fill out the form
.
|