DOI: 10.14489/td.2019.04.pp.012-019
Федотов М. Ю., Будадин О. Н., Козельская С. О. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ КОНТРОЛЯ ПКМ ВОЛОКОННО-ОПТИЧЕСКИМИ ДАТЧИКАМИ С УЧЕТОМ ВОЗДЕЙСТВИЯ ФАКТОРОВ, ИМИТИРУЮЩИХ РЕАЛЬНЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ (c. 12-19)
Аннотация. Приведены линейная и нелинейная математические модели процесса оптического неразрушающего контроля полимерных композиционных материалов и конструкций на их основе с применением волоконно-оптических датчиков на основе волоконных брэгговских решеток. Экспериментально показано, что предложенная линейная модель с высокой точностью описывает процессы, происходящие в материале при эксплуатации, обеспечивая высокую сходимость результатов моделирования с экспериментальными данными контроля, оптимизированными в процессе калибровки волоконно-оптических датчиков с использованием средств классической тензометрии.
Ключевые слова: математическое моделирование, неразрушающий контроль, волоконно-оптический датчик, полимерный композиционный материал, деформация, температура.
Fedotov M. Yu., Budadin O. N., Kozelskaya S. O. MATHEMATICAL MODELING AND EXPERIMENTAL RESULTS OF CONTROL OF PCM BY FIBER-OPTIC SENSORS TAKING INTO ACCOUNT THE INFLUENCE OF FACTORS SIMULATING REAL OPERATING CONDITIONS (pp. 12-19)
Abstract. This article describes linear and quadratic mathematical models of the process of non-destructive testing (NDT) of polymer composite materials (PCM) and structures based by optical method using embedded fiber-optic sensors (FOS) based on fiber Bragg gratings (FBG). The mathematical model describes the relationship between the original data recorded by the FOS (resonant wavelength) and the final characteristics (deformation and temperature). It has been experimentally confirmed that the sensitivity coefficients of FOS for deformation may differ from the standard values characteristic of quartz fibers, which is associated with the influence on the effective refractive index of the technological molding modes PCM, various reinforcement schemes, as well as the human factor in the manual display of FOS at the integration stage. These factors can be minimized by applying a FOS calibration using classical strain gauges. It is shown that the refinement of the parameters of the mathematical model by experimentally determining the coefficient of sensitivity to deformation during the calibration process makes it possible to reduce the systematic error of strain measurements by 5–7 times.
Keywords: mathematical modeling, non-destructive testing, fiber optic sensor, polymeric composite material, strain, temperature.
М. Ю. Федотов (ООО «ЛИРА софт», Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
О. Н. Будадин, С. О. Козельская (АО «ЦНИИСМ», Хотьково, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. Yu. Fedotov (LIRA soft, LLC, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin, S. O. Kozelskaya (Central Research Institute for Special Machinery, Joint Stock Company, Khotkovo, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Гончаров В. А., Федотов М. Ю., Шиенок А. М., Иошин Д. В. Распределенные оптоволоконные сенсоры для контроля напряженно-температурного состояния конструкций // Вопросы материаловедения. 2016. № 1. С. 73 – 79. 2. Гуняева А. Г., Чурсова Л. В., Федотов М. Ю., Черфас Л. В. Исследование углепластика с наномодифицированным молниезащитным покрытием и системой встроенного контроля на основе волоконных брэгговских решеток // Вопросы материаловедения. 2016. № 1. С. 80 – 91. 3. Федотов М. Ю., Шиенок А. М., Гуляев И. Н. и др. Исследование влияния ударных воздействий на спектральные характеристики оптоволоконных сенсоров на основе волоконных брэгговских решеток, интегрированных в полимерный композиционный материал // Вопросы материаловедения. 2015. № 4 (84). С. 100 – 108. 4. Анискович В. А., Будадин О. Н., Заикина Н. Л. и др. Измерение деформаций с использованием волоконно-оптических датчиков в процессе прочностных испытаний анизогридных конструкций из композицион-ных материалов // Контроль. Диагностика. 2018. № 7. С. 44 – 49. 5. Будадин О. Н., Кутюрин В. Ю., Муханова Т. А., Гранев И. С. Измерение деформаций в композиционных баллонах высокого давления с использованием оптоволоконных решеток Брэгга // Контроль. Диагностика. 2018. № 6. С. 34 – 39. 6. Федотов М. Ю., Гончаров В. А., Шиенок А. М., Сорокин К. В. Исследование изгибных деформаций углепластика оптоволоконными сенсорами на брэгговских решетках // Вопросы материаловедения. 2013. № 2 (74). С. 139 – 147. 7. Terentyev V. S., Kharenko D. S., Dostovalov A. V. et al. Fiberoptic sensors based on FBGs with increased sensitivity difference embedded in polymer composite material for separate strain and temperature Measurements // Transforming the Future of Infrastructure through Smarter Information: Proc. of the Intern. Conf. on Smart Infrastructure and Construction, ICSIC 2016. 2016. P. 75 – 79. 8. Shishkin V. V., Terentyev V. S., Kharenko D. S. et al. Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs // Journal of Sensors. 2016. T. 2016. P. 3230968. 9. Othonos A. Fiber Bragg gratings // Review of Scientific Instruments. 1997. V. 68. No. 12. P. 4309 – 4341. 10. Kablov E. N., Sivakov D. V., Gulyaev I. N. et al. Application of optical fiber as strain gauges in polymer composite materials // Polymer Science. Ser. D. 2011. V. 4. No. 3. Р. 246 – 251. 11. Kersey A. D., Davis M. A., Patrick H. J. et al. Fiber Grating Sensors // IEEE J. Lightwave Tech. 1997. V. LT-15. No. 8. P. 1442 – 1463. 12. Morey W. W., Meltz G., Glenn W. H. Fiber Bragg grating sensors // Proc. SPIE Fiber Optic & Laser Sensors VII. 1989. V. 1169. P. 98. 13. Nye J. F. Physical properties of crystals Their representation by tensors and matrices Oxford, 1957. 386 p. 14. Raymond M. Measures Structural monitoring with fiber optic technology Academic Press, 2001. 716 p. 15. Bertholds A., Daendliker R. Determination of the individual strainoptic coefficients in singlemode optical fibers // Journal of Lightwave Technol. 1988. No. 6. P. 17 – 20. 16. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains // Smart Mater. Struct. 2013. V. 22. P. 9. 17. Lagakos N., Bucaro J., Jarzynski J. Temperature-induced optical phase shifts in fibers. // Appl. Opt. 1981. V. 20. P. 2305 – 2308. 18. Barlow A., Payne D. The stress-optic effect in optical fibers // Quantum Electron. 1983. V. 19. P. 834 – 839. 19. Kinet D., Mégret P., Goossen K. W. et al. Fiber bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions // Sensors. 2014. V. 14. P. 7394 – 7419. doi:10.3390/s140407394 20. Пат. RU179119. Устройство выхода волоконно-оптического датчика из композита; опубл. 26.04.2018 г.
1. Goncharov V. A., Fedotov M. Yu., Shienok A. M., Ioshin D. V. (2016). Distributed fiber-optic sensors to monitor the stress-temperature state of structures. Voprosy materialovedeniya, (1), pp. 73-79. [in Russian language] 2. Gunyaeva A. G., Chursova L. V., Fedotov M. Yu., Cherfas L. V. (2016). Investigation of carbon fiber with a nano-modified lightning protection coating and builtin control system based on fiber Bragg gratings. Voprosy materialovedeniya, (1), pp. 80-91. [in Russian language] 3. Fedotov M. Yu., Shienok A. M., Gulyaev I. N. et al. (2015). Investigation of the impact of shock effects on the spectral characteristics of fiber optic sensors based on fiber Bragg gratings integrated into a polymer composite material. Voprosy materialovedeniya, 84(4), pp. 100-108. [in Russian language] 4. Aniskovich V. A., Budadin O. N., Zaikina N. L. et al. (2018). Measurement of deformations using fiber-optic sensors in the process of strength testing of anisogride structures made of composite materials. Kontrol'. Diagnostika, (7), pp. 44-49. [in Russian language] DOI: 10.14489/td.2018. 07.pp.044-049 5. Budadin O. N., Kutyurin V. Yu., Muhanova T. A., Granev I. S. (2018). Measurement of deformations in high pressure composite cylinders using Bragg fiber optic resheaves. Kontrol'. Diagnostika, (6), pp. 34-39. [in Russian language] DOI: 10.14489/td.2018.06.pp.034-039 6. Fedotov M. Yu., Goncharov V. A., Shienok A. M., Sorokin K. V. (2013). Investigation of flexural deformations of carbon fiber with fiber-optic sensors on Bragg gratings. Voprosy materialovedeniya, 74(2), pp. 139-147. [in Russian language] 7. Terentyev V. S., Kharenko D. S., Dostovalov A. V. et al. (2016). Fiber-optic sensors based on FBGs with increased sensitivity difference embedded in polymer composite material for separate strain and temperature Measurements. Transforming the Future of Infrastructure through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, ICSIC 2016, pp. 75-79. 8. Shishkin V. V., Terentyev V. S., Kharenko D. S. et al. (2016). Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs. Journal of Sensors, 2016, pp. 3230968. 9. Othonos A. (1997). Fiber Bragg gratings. Review of Scientific Instruments, Vol. 68, (12), pp. 4309-4341. 10. Kablov E. N., Sivakov D. V., Gulyaev I. N. et al. (2011). Application of optical fiber as strain gauges in polymer composite materials. Polymer Science. Series D, Vol. 4, (3), pp. 246-251. 11. Kersey A. D., Davis M. A., Patrick H. J. et al. (1997). Fiber Grating Sensors. IEEE Journal Lightwave Technology, Vol. LT-15, (8), pp. 1442-1463. 12. Morey W. W., Meltz G., Glenn W. H. (1989). Fiber Bragg grating sensors. Proceedings SPIE Fiber Optic & Laser Sensors VII, Vol. 1169. 13. Nye J. F. (1957). Physical properties of crystals. Their representation by tensors and matrices Oxford. 14. Raymond M. (2001). Measures Structural monitoring with fiber optic technology. Academic Press. 15. Bertholds A., Daendliker R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibers. Journal of Lightwave Technology, (6), pp. 17-20. 16. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. (2013). Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains. Smart Materials and Structures, Vol. 22. 17. Lagakos N., Bucaro J., Jarzynski J. (1981). Temperature-induced optical phase shifts in fibers. Applied Optics, Vol. 20, pp. 2305-2308. 18. Barlow A., Payne D. (1983). The stress-optic effect in optical fibers. Quantum Electronics, Vol. 19, pp. 834-839. 19. Kinet D., Mégret P., Goossen K. W. et al. (2014). Fiber bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors, Vol. 14, pp. 7394-7419. doi:10.3390/s140407394 20. The output device of the fiber optic sensor from the composite. (2018). Ru Patent No. 179119. Russian Federation. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2019.04.pp.012-019
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2019.04.pp.012-019
and fill out the form
.
|