Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2019, 08 август (August)

DOI: 10.14489/td.2019.08.pp.054-059

Эминов Р. А., Гусейнли Э. И.
ОБЩАЯ КОНЦЕПЦИЯ СОЗДАНИЯ УНИВЕРСАЛЬНЫХ ДИАГНОСТИЧЕСКИХ ЛАЗЕРНЫХ СКАНЕРОВ ДЛЯ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ
(c. 54-59)

Аннотация. Освещена выработка общей концепции создания диагностико-геодезических лазерных сканеров для строительства и эксплуатации магистральных газопроводов. Сформулирована общая задача создания лазерных сканеров для нужд строительства и эксплуатации газопроводов, работающих в инфракрасном диапазоне. Осуществлена оптимизация режима функционирования лазерного сканера, работающего в режиме обнаружения утечек газа в магистральных газопроводах. Осуществлен синтез специализированного лазерного сканера, способного реализовать функции геодезического лазерного сканера в период построения газопровода, а также функции диагностики газопровода на предмет обнаружения утечек газа при его эксплуатации.

Ключевые слова:  лазерный сканер, лидар, утечка газа, диагностика, газопровод, оптимизация.

 

Eminov R. A., Huseynli E. I.
GENERAL CONCEPT FOR DEVELOPMENT OF UNIVERSAL LASER SCANNERS FOR CONSTRUCTION AND EXPLOITATION OF MAIN GAS PIPELINES
(pp. 54-59)

Abstract. The article is devoted on development of general concept for development of diagnostic-geodesy laser scanners useful for both the geodesy support of construction and exploitation of main gas pipelines. The carried out review of existing works on such an extension of functional capabilities of laser scanners in direction of combination of geodesy and diagnostic functions of laser at the stages of construction and exploitation of gas pipelines shown absence of any works in such direction. The possibility of technical realization of such extension of functions of laser scanner are considered. The general task on development of laser scanners operating in infrared band for construction and exploitation of gas pipelines is formulated. Optimization of functioning regime of laser scanner working in regime of detection of gas leaks in main gas pipelines is carried out. Synthesis of specialized laser scanner capable to realize functions of geodesy laser scanner during pipeline construction and functions of diagnostics that is detection of gas leaks in stage of pipeline exploitation is carried out. It is shown that technical realization of calculated optimum interrelation between main functional parameters of the system can be realized during serial measurements by organization of adaptive control of laser beam power depending on distance between measuring instrument and gas pipeline. At the same time the system should be equipped by laser distance meter included into gas leak detection system operating in adaptive regime.

Keywords: laser scanner, lidar, gas leak, diagnostics, gas pipeline, optimization.

Рус

Р. А. Эминов (Азербайджанский государственный университет нефти и промышленности, Баку, Азербайджан) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Э. И. Гусейнли (Институт водных проблем, Баку, Азербайджан) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

R. A. Eminov (Azerbaijan State University of Oil and Industry, Baku, Azerbaijan) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. I. Huseynli (Institute of Water Problems, Baku, Azerbaijan) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Delahaye T., Maxwell S. E., Reed Z. D. et al. Precise methane abso 1 rption measurements in the 1.64 m spectral region for the MERLIN mission // Journal of Geophysical Research Atmospheres. 2016. June. DOI: 10.1002/2016JD025024. URL: https://www.nist.gov/publications/precise-methane-absorption-measurements-164-micron-spectral-region-merlin-mission
2. Wainner R. T., Aubut N. F., Laderer M. C., Frish M. B. Scanning, standoff TDLAS leak imaging and quantification. Physical Sciences Inc., 20 New England Business Center, Andover, MA, USA 01810. URL: http://www.psicorp.com/sites/psicorp.com/files/articles/SR-2017-6-SPIE-Wainner.pdf
3. Монтанари С. Г. Выбор оптимальной рабочей температуры фотоприемника в лазерном локаторе утечек метана «Аэропоиск-ЗМ» // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2017. Т. 3. № 1. С. 37 – 45.
4. Малафеев П. Г. Совершенствование мониторинга герметичности газопроводов с использованием современных технологий // Газовая промышленность. 2016. Спецвып. № 3. С. 742. URL: http://neftegas.info/upload/iblock/49d/49d3779bee4c6469b7d98217acff0ef5.pdf
5. Первухин П. А. Методы и приборы обнаружения утечек нефтепродуктов // Технологии техносферной безопасности: Интернет-журнал. 2009. Вып. 6. С. 1 – 14. URL: http://ipb.mos.ru/ub
6. Бушмелева К. И., Плюснин И. И. Автоматическая обработка сигналов в устройстве дистанционного зондирования магистральных газопроводов. URL: http://agps-2006.narod.ru/ttb/2009-6/03-06-09.ttb.pdf
7. Плюснин И. И., Бушмелева К. И., Назин А. Г., Бущмелев П. Е. Использование ГИС-технологий средства повышения эффективности рабы лазерного локатора утечек газа комплексного обследования магистральных газопроводов // Успехи современного естествознания. 2005. № 7. С. 85 – 88.
8. Кащеев С. В. Исследование и использование метода спонтанного комбинационного рассеяния в бортовом лидаре с ультраспектральным разрешением: автореф. дис. … канд. техн. наук. СПб., 2010. 123 с. URL: https://www.researchgate.net/publication/237326248_evaluation_of_active_and_passive_gas_imagers_for_transmission_pipeline_remote_leak_detection
9. Bakuła K. Multispectral airborne laser scanning – a new trend in the development of LiDAR technology / Warsaw University of Technology. Wazsaw, 2015. DOI: 10.14681/afkit.2015.002. URL: https://www.researchgate.net/publica-tion/296486863_Multispectral_airborne_laser_scanning_-_a_new_trend_in_the_development_of_LiDAR_technology
10. Hodgkinson ac J., van Wellb B., Padgettb M., Pride R. D. Modelling and interpretation of gas detection using remote laser pointers // Spectrochimica Acta. Pt A. Molecular Biomolecular Spectroscopy 2006. V. 63. N 5. Р. 929 – 999. URL: https://core.ac.uk/download/pdf/138078.pdf
11. Брюханова В. В., Григорьев C. М. Моделирование лидарного сигнала в приближении двукратного рассеяния от неоднородного капельного облака. URL: http://www.mivlgu.ru/conf/armand2012/pdf/S3_6.pdf
12. Reichardt T. A., Devdas S., Kulp T. J. Evaluation of Active and Passive Gas Imagers for Transmission Pipeline Remote Leak Detection . Final Report, December 2002. URL: https://www.researchgate.net/publication/237326248_Evaluation_of_Active_and_Passive_Gas_Imagers_for_Transmission_Pipeline_Remote_Leak_Detection

Eng

1. Delahaye T., Maxwell S. E., Reed Z. D. et al. (2016). Precise methane absorption measurements in the 1.64 m spectral region for the MERLIN mission. Journal of Geophysical Research Atmospheres. DOI: 10.1002/2016JD025024. Available at: https://www.nist.gov/publications/precise-methane-absorption-measurements-164-micron-spectral-region-merlin-mission
2. Wainner R. T., Aubut N. F., Laderer M. C., Frish M. B. Scanning, standoff TDLAS leak imaging and quantification. Physical Sciences Inc. 20 New England Business Center, Andover, MA, USA 01810. Available at: http://www.psicorp.com/sites/psicorp.com/files/articles/SR-2017-6-SPIE-Wainner.pdf
3. Montanari S. G. (2017). Selection of the optimal operating temperature of the photodetector in the laser locator leaks methane "Aeropoisk-ZM". Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika, 3(1), pp. 37 – 45. [in Russian language]
4. Malafeev P. G. (2016). Improving the monitoring of tightness of gas pipelines using modern technologies. Gazovaya promyshlennost'. Spetsvypusk, (3). Available at: http://neftegas.info/upload/iblock/49d/49d3779bee4c6469b7d98217acff0ef5.pdf [in Russian language]
5. Pervuhin P. A. (2009). Methods and instruments for detecting leakage of petroleum products. Tekhnologii tekhnosfernoy bezopasnosti: Internet-zhurnal, (6), pp. 1 – 14. Available at: http://ipb.mos.ru/ub [in Russian language]
6. Bushmeleva K. I., Plyusnin I. I. Automatic signal processing in the device for remote sensing of gas pipelines. Available at: http://agps-2006.narod.ru/ttb/2009-6/03-06-09.ttb.pdf [in Russian language]
7. Plyusnin I. I., Bushmeleva K. I., Nazin A. G., Buschmelev P. E. (2005). The use of GIS technology means of improving the efficiency of the slaves of a laser gas leak locator for a comprehensive survey of gas pipelines. Uspekhi sovremennogo estestvoznaniya, (7), pp. 85 – 88. [in Russian language]
8. Kascheev S. V. (2010). Research and use of the method of spontaneous Raman scattering in an onboard LIDAR with ultra-spectral resolution. Saint Petersburg. Available at: https://www.researchgate.net/publication/237326248_evaluation_of_active_and_passive_gas_imagers_for_transmission_pipeline_remote_leak_detection [in Russian language]
9. Bakuła K. (2015). Multispectral airborne laser scanning – a new trend in the development of LiDAR technology. Warsaw University of Technology. Wazsaw. DOI: 10.14681/afkit.2015.002. Available at: https://www.researchgate.net/publication/296486863_Multispectral_airborne_laser_scanning__a_new_trend_in_the_development_of_LiDAR_technology
10. Hodgkinson ac J., van Wellb B., Padgettb M., Pride R. D. (2006). Modelling and interpretation of gas detection using remote laser pointers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(5), pp. 929 – 999. Availabe at: https://core.ac.uk/download/pdf/138078.pdf
11. Bryuhanova V. V., Grigor'ev C. M. Simulation of the lidar signal in the double scattering approximation from an inhomogeneous droplet cloud. Available at: http://www.mivlgu.ru/conf/armand2012/pdf/S3_6.pdf [in Russian language]
12. Reichardt T. A., Devdas S., Kulp T. J. (2002). Evaluation of Active and Passive Gas Imagers for Transmission Pipeline Remote Leak Detection. Final Report. Available at: https://www.researchgate.net/publication/237326248_Evaluation_of_Active_and_Passive_Gas_Imagers_for_Transmission_Pipeline_Remote_Leak_Detection

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2019.08.pp.054-059

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.08.pp.054-059

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования