DOI: 10.14489/td.2020.03.pp.056-063
Соколовская Ю. Г., Подымова Н. Б., Карабутов А. А. ЛАЗЕРНО-УЛЬТРАЗВУКОВОЙ МЕТОД ИЗМЕРЕНИЯ АКУСТИЧЕСКОГО ИМПЕДАНСА ДЛЯ ОПРЕДЕЛЕНИЯ ПОРИСТОСТИ ПЕРЕКРЕСТНО-АРМИРОВАННЫХ УГЛЕПЛАСТИКОВ (с. 56-63)
Аннотация. Предложена и экспериментально реализована методика измерения акустического импеданса углепластиков, основанная на использовании лазерного источника ультразвука. Приведена методика определения пористости материала по измеренной величине акустического импеданса. Исследованы пористые образцы перекрестно-армированных углепластиков с тремя схемами укладки углеродных волокон. Обнаружено, что исследованные углепластики обладают неоднородным распределением локальной пористости в плоскости укладки углеродной ткани. Показано совпадение величины пористости, полученной рентгеновской компьютерной томографией, с результатами лазерно-ультразвуковых измерений.
Ключевые слова: углепластики, пористость, лазерно-ультразвуковой метод, продольные акустические волны.
Sokolovskaya Yu. G., Podymova N. B., Karabutov A. A. LASER-ULTRASONIC METHOD OF ACOUSTIC IMPEDANCE MEASUREMENT FOR QUANTITATIVE POROSITY ESTIMATION OF CROSS-PLY CARBON FIBER REINFORCED PLASTIC MATERIALS (pp. 56-63)
Abstract. A method of measuring the acoustic impedance of carbon fiber plastics based on the laser optoacoustic effect is proposed and experimentally realized. Measurement of the acoustic impedance of the studied composite is made by the value of the antiderivative of ultrasonic pulse reflected from the interface between the immersion liquid and the sample. A method for determining the porosity of a material by the measured value of the acoustic impedance, based on the dependence of the material density and the velocity of propagation of longitudinal acoustic waves in it on its porosity, is presented. Porous samples of crossply reinforced carbon plastics with three types of carbon fiber lay-up schemes were studied. It was found that the studied carbon fiber plastics have a non-uniform distribution of local porosity in the plane of carbon fabric stacking. It is also shown that the variation of the local porosity in the sample depends on the fiber laying scheme. It is shown that the porosity value obtained by X-ray computed tomography coincides with the results of laser-ultrasonic measurements. The advantage of the proposed method is the possibility of rapid diagnosis of porosity with one-way access to the object under study without measuring its dimensions and mass, which can be used for composite structures of complex shape.
Keywords: carbon fiber reinforced plastics, porosity, laser-ultrasonic method, longitudinal acoustic waves.
Ю. Г. Соколовская, Н. Б. Подымова (МГУ им. М. В. Ломоносова, физический факультет, Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. А. Карабутов (МГУ им. М. В. Ломоносова, Международный учебно-научный лазерный центр; Национальный исследовательский технологический университет «МИСиС», Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Yu. G. Sokolovskaya, N. B. Podymova (Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. A. Karabutov (International Laser Center, M. V. Lomonosov Moscow State University; National University of Science and Technology “MISiS”, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Soutis C. Fibre reinforced composites in aircraft construction // Progress in Aerospace Sciences. 2005. V. 41. P. 143 – 151. 2. Бойчук А. С., Диков И. А., Генералов А. С. Особенности ультразвукового контроля конструкций из углепластика с выпуклой поверхностью с использованием фазированных решеток и оправок типа waterbox // Контроль. Диагностика. 2019. № 3. C. 14 – 21. 3. Степанова Л. Н., Чернова В. В. Акустико-эмиссионный контроль процесса разрушения образцов из углепластика при воздействии статической нагрузки, положительных и отрицательных температур // Контроль. Диагностика. 2019. № 6. С. 34 – 41. 4. Adams R. D., Cawle P. A review of defect types and nondestructive testing techniques for composites and bonded joints // NDT International. 1988. V. 21. No. 4. P. 208 – 222. 5. Перепелкин К. Е. Армирующие волокна и волокнистые полимерные композиты. СПб.: Научные основы и технологии, 2009. 380 с. 6. Диков И. А., Бойчук А. С., Далин М. А. и др. Связь прочностных характеристик, пористости и данных ультразвукового контроля для образцов из ПКМ, полученных по автоклавной и инфузионной технологиям // Контроль. Диагностика. 2018. № 11. C. 40 – 51. 7. Scott A. E., Sinclair I., Spearing S. M. et al. Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography // Composites Science and Technology. 2014. V. 90. P. 147 – 153. 8. Мурашов В. В., Румянцев А. Ф. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов и методы их выявления. Часть 1. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов // Контроль. Диагностика. 2007. № 4. C. 23 – 32. 9. Мурашов В. В. Методология исследования физико-механических свойств и состава полимерных композиционных материалов методами технической диагностики. Часть 1 // Контроль. Диагностика. 2018. № 6. C. 16 – 22. 10. Карабутов А. А., Подымова Н. Б. Влияние пористости на дисперсию фазовой скорости продольных акустических волн в изотропных металломатричных композитах // Акустический журнал. 2017. Т. 63. № 3. С. 265 – 274. 11. Карабутов А. А., Подымова Н. Б., Беляев И. О. Исследование влияния пористости на затухание ультразвука в углепластиковых композитах методом лазерно-ультразвуковой спектроскопии // Акустический журнал. 2013. Т. 59. № 6. С. 714 – 721. 12. Соколовская Ю. Г., Карабутов А. А. Лазерно-ультразвуковая дефектоскопия конструкций из мультиаксиальных полимерных композиционных материалов // Конструкции из композиционных материалов. 2018. № 1. С. 56 – 60. 13. Соколовская Ю. Г., Жаринов А. Н., Карабутов А. А. Применение лазерно-ультразвукового метода для контроля неоднородностей распределения полимерной матрицы в углепластиковых конструкциях // Контроль. Диагностика. 2018. № 9. С. 48 – 53. 14. Karabutov A. A. (Jr.), Karabutov A. A., Sapohznikov O. A. Determination of the elastic properties of layered materials using laser excitation of ultrasound // Physics of Wave Phenomena. 2010. V. 18. No. 4. P. 297 – 302. 15. Физические величины: справочник / ред. И. С. Григорьев, Е. З. Мейлихов. М.: Энергоатомиздат, 1991. 1232 с. 16. Поляков В. В., Головин А. В. Влияние пористости на скорости ультразвуковых волн в металлах // Письма в ЖТФ. 1994. Т. 20. Вып. 11. С. 54 – 57. 17. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А. Пространственно-армированные композиционные материалы: справочник. М.: Машиностроение, 1987. 224 с.
1. Soutis C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, Vol. 41, pp. 143 – 151. 2. Boychuk A. S., Dikov I. A., Generalov A. S. (2019). Features of ultrasonic inspection of carbon fiber structures with a convex surface using phased arrays and mandrels such as waterbox. Kontrol'. Diagnostika, (3), pp. 14 – 21. [in Russian language] DOI: 10.14489/td.2019.03.pp.014-021 3. Stepanova L. N., Chernova V. V. (2019). Acoustic emission control of the process of destruction of carbon fiber samples under the influence of static load, positive and negative temperatures. Kontrol'. Diagnostika, (6), pp. 34 – 41. [in Russian language] DOI: 10.14489/td.2019.06.pp.034-041 4. Adams R. D., Cawle P. (1988). A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT International, Vol. 21, (4), pp. 208 – 222. 5. Perepelkin K. E. (2009). Reinforcing fibers and fibrous polymer composites. Saint Petersburg: Nauchnye osnovy i tekhnologii. [in Russian language] 6. Dikov I. A., Boychuk A. S., Dalin M. A. et al. (2018). Relationship of strength characteristics, porosity and ultrasonic testing data for PCM samples obtained by autoclave and infusion technologies. Kontrol'. Diagnostika, (11), pp. 40 – 51. [in Russian language] DOI: 10.14489/td.2018.11.pp.040-051 7. Scott A. E., Sinclair I., Spearing S. M. et al. (2014). Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Composites Science and Technology, Vol. 90, pp. 147 – 153. 8. Murashov V. V., Rumyantsev A. F. (2007). Defects of monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 1. Defects of monolithic parts and multilayer structures made of polymer composite materials. Kontrol'. Diagnostika, (4), pp. 23 – 32. [in Russian language] 9. Murashov V. V. (2018). A methodology for the study of the physicomechanical properties and composition of polymer composite materials using technical diagnostic methods. Part 1. Kontrol'. Diagnostika, (6), pp. 16 – 22. [in Russian language] DOI: 10.14489/td.2018.06.pp.016-022 10. Karabutov A. A., Podymova N. B. (2017). The effect of porosity on the phase velocity dispersion of longitudinal acoustic waves in isotropic metal matrix composites. Akusticheskiy zhurnal, Vol. 63, (3), pp. 265 – 274. [in Russian language] 11. Karabutov A. A., Podymova N. B., Belyaev I. O. (2013). Investigation of the effect of porosity on the attenuation of ultrasound in carbon fiber composites by laser-ultrasonic spectroscopy. Akusticheskiy zhurnal, Vol. 59, (6), pp. 714 – 721. [in Russian language] 12. Sokolovskaya Yu. G., Karabutov A. A. (2018). Laser-ultrasonic inspection of structures from multiaxial polymer composite materials. Konstruktsii iz kompozitsionnyh materialov, (1), pp. 56 – 60. [in Russian language] 13. Sokolovskaya Yu. G., Zharinov A. N., Karabutov A. A. (2018). The use of the laser-ultrasonic method to control the heterogeneity of the distribution of the polymer matrix in carbon fiber structures. Kontrol'. Diagnostika, (9), pp. 48 – 53. [in Russian language] DOI: 10.14489/td.2018.09.pp.048-053 14. Karabutov A. A. (Jr.), Karabutov A. A., Sapohz¬nikov O. A. (2010). Determination of the elastic properties of layered materials using laser excitation of ultrasound. Physics of Wave Phenomena, Vol. 18, (4), pp. 297 – 302. 15. Grigor'ev I. S., Meylihov E. Z. (1991). Physical quantities: handbool. Moscow: Energoatomizdat. [in Russian language] 16. Polyakov V. V., Golovin A. V. (1994). The effect of porosity on the speed of ultrasonic waves in metals. Pis'ma v zhurnal tekhnicheskoy fiziki, Vol. 20, (11), pp. 54 – 57. [in Russian language] 17. Tarnopol'skiy YU. M., Zhigun I. G., Polyakov V. A. (1987). Spatially Reinforced Composite Materials: A Handbook. Moscow: Mashinostroenie. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2020.03.pp.056-063
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2020.03.pp.056-063
and fill out the form
.
|