Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2020, 06 июнь (June)

DOI: 10.14489/td.2020.06.pp.004-013

Степанова Л. Н., Чернова В. В., Кабанов С. И.
МЕТОДИКА БРАКОВКИ ДЕФЕКТОВ В ОБРАЗЦАХ ИЗ УГЛЕПЛАСТИКА ПО ПАРАМЕТРАМ СИГНАЛОВ АКУСТИЧЕСКОЙ ЭМИССИИ ПРИ СТАТИЧЕСКОМ И ТЕПЛОВОМ НАГРУЖЕНИИ
(c. 4-13)

Аннотация. Предложена методика браковки дефектов в образцах из углепластика Т 800, нагружаемых статической растягивающей нагрузкой через интервал ΔP = 10 кН до полного разрушения. Одна часть образцов нагружалась при температуре 20 °С, а другая часть подвергалась одновременному статическому нагружению и нагреву до температуры 100 °С. Образцы из углепластика с размерами 600×100×0,9 мм были выполнены по автоклавной и вакуумной технологиям при температурах 80; 135; 180 °С. Контроль за процессом разрушения образцов осуществлялся методом акустической эмиссии (АЭ). Для выполнения браковки дефектов использовались информативные параметры сигналов АЭ (структурный коэффициент и медиана амплитуды сигналов). Критическому разрушению, связанному с разрывом волокон в композите, соответствовали сигналы АЭ со значением структурного коэффициента меньше порогового и значением медианы амплитуд больше порогового.

Ключевые слова:  углепластик, разрушение, акустическая эмиссия, статическое нагружение, нагрев, структурный коэффициент, медиана амплитуды.

 

Stepanova L. N., Chernova V. V., Kabanov S. I.
METHOD OF REJECTION OF DEFECTS IN CARBON FIBER SAMPLES BY PARAMETERS OF ACOUSTIC EMISSION SIGNALS UNDER STATIC AND THERMAL LOADING
(pp. 4-13)

Abstract. A method for rejecting defects in T 800 carbon fiber samples loaded with a static tensile load at an interval of ΔP = 10 kN until complete destruction is proposed. One part of the samples was loaded at a temperature of 20 °C, and the other part was subjected to simultaneous static loading and heating to a temperature of 100 °C. Samples made of carbon fiber with a size of 600×100×0.9 mm were made using autoclave and vacuum technologies at temperatures of 80; 135; 180 °C. the process of destruction of samples was controlled by acoustic emission (AE). To perform defect rejection, informative parameters of AE signals (structural coefficient and median signal amplitude) were used. The critical damage associated with the breaking of the fibers in the composite corresponded to AE signals with a structural coefficient less than a threshold and a median of amplitudes greater than a threshold.

Keywords: carbon fiber, destruction, acoustic emission, static loading, heating, structural coefficient, median amplitude.

Рус

Л. Н. Степанова (ФГУП «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (Сибирский государственный университет путей сообщения» (СГУПС), Новосибирск, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. И. Кабанов (ФГУП «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

L. N. Stepanova (Federal State Unitary Enterprise “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (The Siberian Transport University (STU), Novosibirsk, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. I. Kabanov (Federal State Unitary Enterprise “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Душин М. И., Хрульков А. В., Мухаметов Р. Р. Выбор технологических параметров автоклавного формования деталей из полимерных композиционных материалов // Авиационные материалы и технологии. 2011. № 3. С. 20 – 26.
2. Вешкин Е. А., Постнов В. И., Абрамов П. А. Пути повышения качества деталей из ПКМ при вакуумном формовании // Известия Самарского научного центра Российской академии наук. 2012. Т. 14. № 4(3). С. 834 – 839.
3. Хрульков А. В., Григорьев М. М., Язвенко Л. Н. Перспективы внедрения безавтоклавных технологий для изготовления конструкционных материалов (обзор) // Тр. ВИАМ. 2016. № 2(38). С. 45 – 52.
4. Донецкий К. И., Душин М. И., Мищун М. И., Севастьянов Д. В. Некоторые особенности применения семипрегов для вакуумного формования ПКМ (обзор) // Тр. ВИАМ. Композиционные материалы. 2017. № 12(60). С. 81 – 93.
5. Степанова Л. Н., Батаев В. А., Чернова В. В. Определение связи структуры образцов из углепластика с параметрами сигналов акустической эмиссии при одновременном статическом и тепловом нагружении // Контроль. Диагностика. 2019. № 11. С. 4 – 13.
6. Madaras E. Highlights of NASA´s role in developing state-of-the-art nondestructive evaluation for composites: NASA Document ID 20050050900 // Presented at the American Helicopter Sosiety Hampton Roads Chapter Structure Specialist Meeting. Williamsburg, VA. 30 Oct – 1 Nov. 2001. Williamsburg, 2001.
7. Prosser W., Madaras E., Studor G., Gorman M. Acoustic emission detection of impact damage on space shuttle structures // Journal of Acoustic Emission. 2005. V. 23. P. 37 – 46.
8. Gorman M. Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure vessel // Journal of Acoustic Emission. 2011.V. 29. P. 1 – 28.
9. Sudha J., Sampathkumare S., Kumar R. Condition monitoring of delamination during drilling of GFRP composites using acoustic emission technique – a neural model // Insight. 2011. V. 53. No. 8. P. 445 – 449.
10. Madaras E., Horne M. Investigation of the magneto-acoustic villari effect for measuring the internal stress in composites // Seedling Technical seminar. February 19 – 27, 2014. NASA.
11. Fengming Yu., Yoji Okabe, Qi Wu, Naoki Shigeta. Damage type identification based on acoustic emission detection using a fiber-optic sensor in carbon fiber reinforced plastic laminates // 32nd European Conference on Acoustic Emission Testing, Prague, Czech Republic, September 07 – 09, 2016. Prague, 2016. P. 543 – 550.
12. Степанова Л. Н., Чернова В. В., Кабанов С. И. Анализ модового состава сигналов акустической эмиссии при одновременном тепловом и статическом нагружении образцов из углепластика Т800 // Контроль. Диагностика. 2018. № 11. С. 4 – 13.
13. Stepanova L. N., Petrova E. S., Chernova V. V. Strength tests of a CFRP spar using methods of acoustic emission and tensometry // Russion Journal of Nondestructive testing. 2018. V. 54. No. 4. P. 243 – 248.
14. Stepanova L. N., Chernova V. V., Petrova E. S., Ramazanov I. S. Acoustic-emission testing of failure in samples of CFRP exposed to static and heat loads // Russion Journal of Nondestructive testing. 2018. V. 54. No. 11. P. 748 – 756.
15. Пат. 2704144. МПК G 01 N 29/14. Акустико-эмиссионный способ определения дефектов структуры образца из углепластика / Л. Н. Степанова, С. И. Кабанов, В. В. Чернова; опубл. 24.10.2019 // Бюл. 2019. № 30.
16. Пат. 2674573. МПК G 01 N 29/14. Способ акустико-эмиссионного контроля дефектов в композиционных конструкциях на основе углепластика / Л. Н. Степанова, С. И. Кабанов, И. С. Рамазанов, В. В. Чернова; опубл. 11.12.2018 // Бюл. 2018. № 35.
17. Пат. 2676209. МПК G 01 N 29/14. Акустико-эмиссионный способ определения типа дефекта структуры образца из углепластика / Л. Н. Степанова, В. А. Батаев, Н. А. Лапердина, В. В. Чернова; опубл. 26.12.2018 // Бюл. 2018. № 36.
18. Батаев В. А., Степанова Л. Н., Лапердина Н. А., Чернова В. В. Акустико-эмиссионный контроль ранней стадии развития дефектов при статическом нагружении образцов из углепластика // Контроль. Диагностика. 2018. № 8. С. 14 – 20.

Eng

1. Dushin M. I., Hrul'kov A. V., Muhametov R. R. (2011). The choice of technological parameters of autoclave molding of parts from polymer composite materials. Aviatsionnye materialy i tekhnologii, (3), pp. 20 – 26. [in Russian language]
2. Veshkin E. A., Postnov V. I., Abramov P. A. (2012). Ways to improve the quality of PCM parts in vacuum molding. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, Vol. 14, 3(4), pp. 834 – 839. [in Russian language]
3. Hrul'kov A. V., Grigor'ev M. M., Yazvenko L. N. (2016). Prospects for the introduction of autoclave-free technologies for the manufacture of structural materials (review). Trudy VIAM, 38(2), pp. 45 – 52. [in Russian language]
4. Donetskiy K. I., Dushin M. I., Mishchun M. I., Sevast'yanov D. V. (2017). Some features of the application of semiregs for vacuum molding of PCM (review). Trudy VIAM. Kompozitsionnye materialy, 60(12), pp. 81 – 93. [in Russian language]
5. Stepanova L. N., Bataev V. A., Chernova V. V. (2019). Determination of the relationship between the structure of carbon fiber samples and the parameters of acoustic emission signals with simultaneous static and thermal loading. Kontrol'. Diagnostika, (11), pp. 4 – 13. [in Russian language] DOI: 10.14489/td.2019.11.pp.004-013
6. Madaras E. (2001). Highlights of NASA´s role in developing state-of-the-art nondestructive evaluation for composites: NASA Document ID 20050050900. Presented at the American Helicopter Society Hampton Roads Chapter Structure Specialist Meeting. Williamsburg.
7. Prosser W., Madaras E., Studor G., Gorman M. (2005). Acoustic emission detection of impact damage on space shuttle structures. Journal of Acoustic Emission, Vol. 23, pp. 37 – 46.
8. Gorman M. (2011). Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure vessel. Journal of Acoustic Emission, Vol. 29, pp. 1 – 28.
9. Sudha J., Sampathkumare S., Kumar R. (2011). Condition monitoring of delamination during drilling of GFRP composites using acoustic emission technique – a neural model. Insight, Vol. 53, (8), pp. 445 – 449.
10. Madaras E., Horne M. (2014). Investigation of the magneto-acoustic villari effect for measuring the internal stress in composites. Seedling Technical seminar. NASA.
11. Fengming Yu., Yoji Okabe, Qi Wu, Naoki Shigeta. (2016). Damage type identification based on acoustic emission detection using a fiber-optic sensor in carbon fiber reinforced plastic laminates. 32nd European Conference on Acoustic Emission Testing, pp. 543 – 550. Prague.
12. Stepanova L. N., Chernova V. V., Kabanov S. I. (2018). Analysis of the mode composition of acoustic emission signals with simultaneous thermal and static loading of T800 carbon fiber samples. Kontrol'. Diagnostika, (11), pp. 4 – 13. [in Russian language] DOI: 10.14489/td.2018.11.pp.004-013
13. Stepanova L. N., Petrova E. S., Chernova V. V. (2018). Strength tests of a CFRP spar using methods of acoustic emission and tensometry. Russian Journal of Nondestructive testing, Vol. 54, (4), pp. 243 – 248.
14. Stepanova L. N., Chernova V. V., Petrova E. S., Ramazanov I. S. (2018). Acoustic-emission testing of failure in samples of CFRP exposed to static and heat loads. Russian Journal of Nondestructive testing, Vol. 54, (11), pp. 748 – 756.
15. Stepanova L. N., Kabanov S. I., Chernova V. V. (2019). Acoustic emission method for determining structural defects of a carbon fiber sample. Ru Patent No. 2704144. [in Russian language]
16. Stepanova L. N., Kabanov S. I., Ramazanov I. S., Chernova V. V. (2018). The method of acoustic emission control of defects in composite structures based on carbon fiber. Ru Patent No. 2674573. [in Russian language]
17. Stepanova L. N., Bataev V. A., Laperdina N. A., Chernova V. V. (2018). Acoustic emission method for determining the type of structural defect of a carbon fiber sample. Ru Patent No. 2676209. [in Russian language]
18. Bataev V. A., Stepanova L. N., Laperdina N. A., Chernova V. V. (2018). Acoustic emission control of the early stage of the development of defects under static loading of carbon fiber samples. Kontrol'. Diagnostika, (8), pp. 14 – 20. [in Russian language] DOI: 10.14489/td.2018.08.pp.014-020

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2020.06.pp.004-013

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.06.pp.004-013

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования