DOI: 10.14489/td.2020.05.pp.006-018
Ushakov V. M., Evtushenko S. G., Zhukov A. D., Yurechko A. S. THE NON-DESTRUCTIVE TESTING FOR AGING MANAGEMENT OF EQUIPMENT AND PIPELINES AT NUCLEAR POWER PLANTS. REVIEW (pp. 6-18)
Abstract. The paper presents some approaches and methods for assessing and evaluation of different properties of equipment and pipelines metal of nuclear power plants during an operation such as a stress-strain state, a temperature and electrochemical effects. A problem statement for ageing management is considered for such metal properties of the heat – bearing agents. For this purpose, an observation of literature is provided for non – destructive testing (NDT) methods that have a correlation to a degradation factor defined by certain properties. There is has been made a case to apply NDT methods as a promising tool for an estimation and evaluation of degradation factor for a metal of potentially hazardous equipment. For this purpose there are proposed some rational and efficient solutions likes of acoustic methods based on structural – reverberation noise analysis, electromagnetic methods based on a coercive field strength deviation and electrical methods based on principles of potentiometry.
Keywords: non-destructive testing, stress-strain state, tensometry, ultrasonic testing, magnetic testing, contact potentiometry method.
V. M. Ushakov, S. G. Evtushenko, A. D. Zhukov, A. S. Yurechko (JSC “RPA “CNIITMASH”, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Kachanov L. M. (1974). Fundamentals of fracture mechanics. Moscow: Nauka. [in Russian language] 2. Romaniv O. N., Nikiforchin G. N. (1986). Corrosion mechanics of structural alloys. Moscow: Metallurgiya. [in Russian language] 3. IAEA. (2009). Managing the aging of nuclear power plants. Safety guidance No. NS-2. [in Russian language] 4. IAEA. (2018). Aging management and development of a program for the extended operation of nuclear power plants. Safety guidance No. SSG-48. [in Russian language] 5. Atom stations. Control and management important to safety. Aging management. (2016). Ru Standard No. GOST MEK 63342–2016. Moscow: Standartinform. [in Russian language] 6. Resource management requirements for equipment and pipelines of nuclear power plants. The main provisions. (2015). Scientific and Technical Center for Nuclear and Radiation Safety. Norms and rules in atomic safety No. NP-096–15. Rostekhnadzor. Moscow. [in Russian language] 7. Hayretdinov V. U., Malyshev R. Yu., Badanova M. V. (2015). Strain gauge studies of NPP equipment. Scientific and Technical Conference "Thermophysics of New Generation Reactors". Obninsk. Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/documents/mntk2015-012.pdf (Accessed: 2020.03.17). [in Russian language] 8. Lyapichev D. M., Zhitomirskiy B. L. (2016). Modern approaches to monitoring stress-strain state of technological pipelines of compressor stations. Gazovaya promyshlennost', (11), pp. 46 – 53. [in Russian language] 9. Vasil'kov S. D., Ulybin A. V. (2009). Assessment of the stress-strain state and resource of steel beams using a resistive electro-contact method. Materials XIII scientific-methodical conference of VITU “Defects of buildings and structures. Strengthening building structures", pp. 39 – 43. Saint Petersburg: VITU. [in Russian language] 10. Standards for calculating the strength of equipment and pipelines of nuclear power plants. (1989). Norms and Rules in Atomic Energy No. PNAE G-7-02–86. Moscow: Atomenergo. [in Russian language] 11. Nikolaev Yu. A., Skundin M. A., Zhurkov D. A. (2003). Use of witness samples to determine the thermal embrittlement of materials for VVER-1000 reactor vessels. Moscow: NITs «Kurchatovskiy institut». [in Russian language] 12. Saushkin M. N., Sazanov V. P., Vakulyuk V. S. (2014). Method for determining the endurance limit of cylindrical specimens of structural steels from the residual stresses of the witness specimen. Vestnik PNIPU. Mekhanika, (4), pp. 178 – 196. [in Russian language] 13. Sazanov V. V. (2017). Selection of witness samples for evaluating the effectiveness of nitriding of the surface of parts. Vestnik SGAU, Vol. 16, (1). Available at: https://journals.ssau.ru/index.php/vestnik/article/view/4604 [in Russian language] 14. Trofimov V. V., Kraus I., Il'yasov R. U. The use of a portal X-ray tensor to control the stress-strain state in aluminum drill pipes. Available at: http://os.x-pdf.ru/20tehnicheskie/377106-1-udk-539261-trofimov-chizhikov-ilyasov-panov-primenenie-portativno.php (Accessed: 20.11.2019). [in Russian language] 15. Shcherbinskiy V. G. (2016). Ultrasonic structuroscopy and metal tensometry: a review. Tyazheloe mashinostroenie, (3 – 4), pp. 2 – 8. [in Russian language] 16. Murav'ev V. V. (1996). The speed of sound and the structure of steels and alloys. Novosibirsk: Nauka. [in Russian language] 17. Aleshin N. P. (2011). The possibility of non-destructive testing methods for assessing the stress-strain state of loaded metal structures. Svarka i Diagnostika, (6), pp. 44 – 47. [in Russian language] 18. Vengrinovich V. L. (2005). Principles and practice of diagnostics of the stress-strain state of structures, products and welded joints. V mire NK, pp. 4 – 9. [in Russian language] 19. Klyuev V. V. (Ed.), Ermolov I. N., Lange Yu. V. (2008). Ultrasonic testing. Non-Destructive Testing: Handbook: in 8 volumes. Vol. 3. 2nd ed. Moscow: Mashinostroenie. [in Russian language] 20. Nikitina N. E., Kazachek S. V., Kamyshev A. V. et al. (2005). The study of the biaxial stress state of the pipe whip with the Astron device. V mire NK, 27(1), pp. 33 – 35. [in Russian language] 21. Samokrutov A. A., Bobrov V. T., Shevaldykin V. G. et al. (2008). Acoustic methods and means for studying the stress-strain state of metal structures and structures. V mire NK, (1), pp. 22 – 26. [in Russian language] 22. Nikitina N. E. (2005). Acoustoelasticity. Practical experience. Nizhniy Novgorod: TALAM. [in Russian language] 23. Erofeev V. I., Zaznobin V. A., Samohvalov R. V. (2007). On the determination of mechanical stresses in solids by the acoustic method. Akusticheskiy zhurnal, Vol. 53, (5), pp. 625 – 631. [in Russian language] 24. Hlybov A. A., Uglov L. A., Rodyushkin V. M. (2017). Assessment of mechanical stresses in structural elements using Rayleigh surface waves generated by electro-acoustic transducers. Vestnik nauchno-tekhnicheskogo razvitiya, 120(8), pp. 29 – 39. [in Russian language] 25. Ilyahinskiy A. V., Rodyushkin V. M., Nikitina E. A. (2018). On the assessment of current stresses by the acoustic method during plastic deformation of steel. Transportnye sistemy, 7(1), pp. 52 – 56. [in Russian language] 26. Belyaev A. K., Lobachev A. M., Modestov V. S. et al. (2016). Estimation of plastic strain using acoustic anisotropy. Mekhanika tverdogo tela, (5), pp. 124 – 131. [in Russian language] 27. Erofeev V. I., Nikitina E. A. (2010). Self-consistent dynamic problem of assessing material damage by the acoustic method. Akusticheskiy zhurnal, Vol. 56, (4), pp. 554 – 557. [in Russian language] 28. Gretskaya I. A., Sosnin O. V., Konovalov S. V. et al. (2002). Construction of a low-cycle fatigue curve by measuring the speed of ultrasound. Abstracts of the XIII St. Petersburg Readings on Strength Problems. Saint Petersburg. [in Russian language] 29. Piskalenko V. V., Danilov V. I., Zuev L. B. et al. (2002). Degradation of the properties of steam heating elements during long-term operation. Abstracts of the XIII St. Petersburg Readings on Strength Problems. Saint Petersburg. [in Russian language]. 30. Hlybov A. A., Skudnov V. A. (2010). Assessment of structural changes in structural metal materials by acoustic methods to ensure the safe operation of technical objects. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R. E. Alekseeva. Metallurgiya i materialovedenie, 80(1), pp. 200 – 209. [in Russian language] 31. The methodology for measuring mechanical stresses resulting from technological influences using the method of acoustoelasticity. Elements of equipment NPP / OOO "INKOTES". (2009). Certificate of attestation No. 633/1700. Nizhniy Novgorod. [in Russian language] 32. Himchenko N. V. (1976). Ultrasonic structural analysis of metallic materials and products. Moscow: Mashinostroenie. [in Russian language] 33. Dymkin G. Ya., Kadikova M. B. (2009). Ultrasonic method for quantifying the structure of metal axles of wheelsets. Defektoskopiya, (7), pp. 27 – 37. [in Russian language] 34. Vasil'ev V. G., Uglov A. L., Hlybov A. A. (2009). Acoustic method for monitoring the state of VVER buildings. Atomnaya energiya, Vol. 106, (1), pp. 31 – 35. [in Russian language] 35. Nikitina N. E., Kamyshev A. V., Kazachek S. V. (2015). Acoustoelasticity application for stress determination in anisotropic pipe steels. Defektoskopiya, (3), pp. 51 – 60. [in Russian language] 36. Uglov A. P., Hlybov A. A. (2015). On the control of the stress state of gas pipelines from anisotropic steel by the method of acoustoelasticity. Defektoskopiya, (4), pp. 34 – 41. [in Russian language] 37. Smirnov A. N., Ababkov N. V., Murav'ev V. V., Fal'mer S. V. (2015). Criteria for assessing the technical condition of a long-running metal of TPP equipment based on acoustic spectroscopy. Defektoskopiya, (2), pp. 44 – 51. [in Russian language] 38. Aleshin N. P., Uglov A. L., Hlybov A. A., Prilutskiy M. A. (2008). On the features of using the acoustic method for monitoring the stress state of pipelines from steels with adjustable rolling. Kontrol'. Diagnostika, (1), pp. 21 – 30. [in Russian language] 39. Aleshin N. P., Uglov A. L., Prilutskiy M. A. (2008). On the possibility of using head waves to control mechanical stresses. Svarka i diagnostika, (3), pp. 17 – 19. [in Russian language] 40. Murav'ev V. V., Kotolomov A. Yu., Bayteryakov A. V., Dedov A. I. (2014). Determination of the grain size of a metal by acoustic structural noise. Izvestiya vysshih uchebnyh zavedeniy. Chernaya metallurgiya, Vol. 57, (11), pp. 65 – 69. [in Russian language] 41. Kachanov I. V., Sokolov L. V., Voronkova V. G., Refrtashev A. V. (2010). Rodin Structural noise as a normative parameter at the ultrasonic nondestructive testing. 10th European conference on Non-destructive testing. Moscow. 42. Kartashev V. G., Kachanov V. K., Sokolov I. V. (2014). Radio engineering methods in ultrasonic flaw detection. Vestnik MEI, (2), pp. 64 – 72. [in Russian language] 43. Kartashev V. G., Kachanov V. K., Sokolov I. V., Fedorov M. B. (2015). Ultrasonic adaptive multifunctional flaw detection. Moscow: Izdatel'skiy dom MEI. [in Russian language] 44. Kartashev V. G., Kachanov V. K., Sokolov I. V. et al. (2015). Ultrasonic structuroscopy of products from complex structural materials based on the analysis of the static characteristics of structural noise. Defektoskopiya, (6), pp. 41 – 56. [in Russian language] 45. Kachanov V. K., Kartashev V. G., Sokolov I. V. et al. (2016). Structural noise in ultrasonic inspection. Moscow: Izdatel'skiy dom MEI. [in Russian language] 46. Kartashev V. G., Kachanov V. K., Sokolov I. V. et al. (2018). Structural noise during ultrasonic testing of products from materials with complex structure. Defektoskopiya, (1), pp. 19 – 32. [in Russian language] 47. Kachanov V. K., Sokolov I. V., Zaleykin A. V., Fedorov M. B. (2006). Multifunctional ultrasonic testing equipment. Abstracts of the V International Conference "Non-Destructive Testing and Technical Diagnostics in Industry". Moscow: Mashinostroenie. [in Russian language] 48. Kartashev V. G., Sevalkin D. A., Turkin M. V. (2013). An optimal algorithm for spatiotemporal signal processing in ultrasonic inspection in the presence of structural noise. Vestnik MEI, (4), pp. 110 – 114. [in Russian language] 49. Murav'ev V. V., Len'kov S. V., Dedov A. I. et al. (2016). The effect of uniaxial tension of 09G2S steel samples after various heat treatments on acoustic structural noise. Izvestiya vysshih uchebnyh zavedeniy. Chernaya metallurgiya, Vol. 59, (2), pp. 118 – 122. [in Russian language] 50. Murav'ev V. V., Bayteryakov A. V., Dedov A. I. et al. (2015). Assessment of the level of acoustic structural noise during uniaxial tension of flat specimens of 09G2S pipe steel after various heat treatments. Deformatsiya i razrushenie materialov, (10), pp. 40 – 46. [in Russian language] 51. Ermolov I. N. (1981). Theory and practice of ultrasonic testing. Moscow: Mashinostroenie. [in Russian language] 52. Gorkunov E. S., Efimov A. G., Shubochkin A. E., Artem'ev B. V. (2016). On the issue of using the magnetic NK method to determine the stress-strain state of metal structures. V mire NK, (4), pp. 43 – 46. [in Russian language] 53. Miheev M. N., Gorkunov E. S. (1993). Magnetic methods of structural analysis and non-destructive testing. Moscow: Nauka. [in Russian language] 54. Nikolaeva E. P. (2013). Application of the Barkhausen noise method to control hardening of parts by surface plastic deformation. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, Vol. 15, 2(6), pp. 2 – 13. [in Russian language] 55. Trofimov V. N., Karmanov V. V., Shiryaev A. A. (2016). Equipment calibration method for measuring residual stresses. Prikladnaya matematika i voprosy upravleniya, (4), pp. 106 – 113. [in Russian language] 56. Byzov A. V., Valiev E. A., Shcherbinin V. E., Kostin V. N. (2015). Detection of surface defects by the magnitude of locally measured magnetic noise, pp. 390 – 394. Ekaterinburg: UrFU. [in Russian language] 57. Klyuev V. V. (Ed). (2006). Nondestructive testing: handbook: in 8 volumes. Moscow: Mashinostroenie. [in Russian language] 58. Vengrinovich V. L., Tsukerman V. L., Denkevich Yu. B. (2005). New possibilities of NC stresses using the Barkhausen effect method. V mire NK, 27(5), pp. 36 – 39. [in Russian language] 59. Makarov P. S. (2007). Improving the methods of magnetic control of the stress-strain state of the pipeline construction. Ufa. [in Russian language] 60. Nichipuruk A. P., Stashkov A. N., Kostin V. N. et al. (2015). Coercimetric quality control of steel parts. Ural school of coercimetry. V mire NK, (4), pp. 9 – 21. [in Russian language] 61. Nekhotyashchiy V. A., Papienko A. L., Gapkola A. P. (2015). Assessment of steel degradation 08X18H9 according to the kinetics of coercive force. V mire NK, (4), pp. 14 – 21. [in Russian language] 62. Popov B. E. (2015). Magnetic control of weld fatigue resistance. V mire NK, (4), pp. 4, pp. 17 – 21. [in Russian language] 63. Vakulenko K. V., Kazak I. B., Sorochinskiy S. V. et al. (2015). Metal coercivity as a measure of its microdamage in problems of fatigue assessment and restoration of mechanical properties. V mire NK, (3), pp. 59 – 61. [in Russian language] 64. Rigmant M. B., Nichipuruk A. P., Kork M. K., Mihovski M. (2016). Magnetic control of the phase composition of threephase chromium-nickel steels. Nauchnye izvestiya, (10). [in Russian language] 65. Rigmant M. B., Zinchenko A. P., Nichipuruk A. P. et al. (2016). The use of magnetic control to optimize the technology for the production of corrosion-resistant austenitic steels. Defektoskopiya, (10). [in Russian language] 66. Chulkina A. A., Ul'yanov A. I., Ul'yanov A. L. et al. (2015). Phase composition, structural state, and magnetic properties of nanocomposites of the composition (Fe, Cr) 75C25: mechanosynthesis, isochronous annealing. Nauka, Vol. 116, (1), pp. 21 – 30. [in Russian language] 67. Rigmant M. B., Nichipuruk A. P., Hudyakov B. A. et al. (2005). Devices for magnetic analysis of austenitic stainless steels. Defektoskopiya, (11), pp. 4 – 14. [in Russian language] 68. Efimov A. G., Shubochkin A. E. (2015). The use of eddy current flaw detection and magnetic structuroscopy in the integrated control of trunk pipelines. Ekspozitsiya Neft' Gaz, (3), pp. 61 – 64. [in Russian language] 69. Tyutin M. R., Botvin L. R., Levin V. P. et al. (2017). Study of the mechanical properties of structural steels by acoustic and magnetic methods. Zavodskaya laboratoriya. Diagnostika materialov, Vol. 83, (7), pp. 44 – 48. [in Russian language] 70. Surin V. I., Evstyuhin N. A. (2008). Electrophysical methods of non-destructive testing and research of reactor materials. Moscow: MIFI. [in Russian language] 71. Surin V. (2018). New potential for potentiometry. Nuclear Engineering International, 765(63), pp. 30 – 32. 72. Drozdov Yu. N., Archegov V. G., Smirnov V. I. (1981). Antiseize resistance of rubbing bodies. Moscow: Nauka. [in Russian language] 73. Surin V. I., Evstyuhin N. A., Oborin S. B. (2009). Spectral analysis of the contact potential difference during longterm fatigue tests of the D16T alloy. Nauchnaya sessiya MIFI. Annotatsiya dokladov, Vol. 1. [in Russian language] 74. Nishiyama H., Inoue Y. (2006). PEEM study of work function changes in Cu, Au and Pd metal surfaces with surface acoustic wave propagation. Surface Science, Vol. 600, pp. 2644 – 2649. 75. Shtremel' M. A. (1997). The strength of alloys. Part II. Moscow: MISIS. [in Russian language] 76. Sheng P. (1980). Fluctuationinduced tunneling conduction in disordered materials. Physical Review, Vol. 21, pp. 2180 – 2195. 77. Surin V. I., Zorina T. N., Korotin A. F. (2010). Surface potentiometry of metallic materials during long-term fatigue tests. Scientific session of NRNU MEPhI-2010. Vol. 2. Nano-physics and nanotechnology. Fundamental problems of science. Moscow: NIYaU MIFI. [in Russian language] 78. Mallat S. (1999). A wavelet tour of signal processing. 2nd ed. New York: Academic Press.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2020.05.pp.006-018
and fill out the form
|