Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2020, 07 июль (July)

DOI: 10.14489/td.2020.07.pp.004-017

Бадалян В. Г.
ВЫЯВЛЕНИЕ И ДОСТОВЕРНОСТЬ КОНТРОЛЯ В УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ И ДЕФЕКТОМЕТРИИ
(pp. 4-17)

Аннотация. Эффективность методов и средств ультразвукового неразрушающего контроля (УЗК) оценивается по вероятности выявления дефектов и достоверности результатов контроля. В работе исследуется поведение PoD(a) – функции выявляемости дефектов, описывающей зависимость вероятности обнаружения дефектов от их высоты, и оценивается достоверность контроля путем ROC-анализа данных контроля. Анализ PoD-кривых, полученных по результатам УЗК приборами УЗ-дефектоскопии и УЗ-дефектометрии, демонстрирует существенно большую надежность применения методик и приборов дефектометрии. ROC-кривые, построенные по данным УЗ-дефектометрии, дают возможность оценить достоверность контроля дефектов различной высоты. Анализ ROC-кривых дает дополнительную информацию для оптимизации методик УЗ-контроля. Исследования выполнялись на массиве данных УЗК сварных соединений с реальными трещинами.

Ключевые слова:  ультразвуковой неразрушающий контроль, вероятность выявления дефектов, функция выявляемости дефектов PoD(a), УЗ-дефектоскопия и УЗ-дефектометрия, ROC-кривые.

 

Badalyan V. G.
IDENTIFICATION AND RELIABILITY OF CONTROL IN ULTRASONIC FLAW DETECTION AND DEFECTOMETRY
(pp. 4-17)

Abstract. The effectiveness of methods and means of ultrasonic non-destructive control (ultrasonic control) is evaluated by the probability of detecting defects and the reliability of the results of the control. In this work, we reserch the behavior of PoD(a) – the defect detection function, which describes the dependence of the probability of detection of defects on their height, and estimates the reliability of control by means of ROC analysis of the control data. An analysis of the PoD curves obtained by ultrasonic testing with ultrasonic flaw detection and ultrasonic flaw detection instruments demonstrates significantly greater reliability of the use of defectometry techniques and devices. ROC curves constructed using ultrasonic defectometry data make it possible to evaluate the reliability of control of defects of various heights. Analysis of ROC curves provides additional information for optimizing ultrasonic control techniques. The studies were carried out on the data array of ultrasonic testing of welded joints with real cracks.

Keywords: ultrasonic non-destructive control, probability of detecting defects, defect detection function PoD(a), ultrasonic defectometry, ROC curves.

Рус

В. Г. Бадалян (ООО «НПЦ «ЭХО+», Москва, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

V. G. Badalyan (Co Ltd “Scientific Production Center of Nondestructive Ultrasonic Testing “ECHO+”, Moscow, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Иванов В. И., Коновалов Н. Н., Котельников В. С. и др. Вопросы оценки риска аварии с использованием технического диагностирования // Контроль. Диагностика. 2015. № 3. С. 12 – 20.
2. Бадалян В. Г, Базулин Е. Г., Вопилкин А. Х. и др. Ультразвуковая дефектометрия металлов с применением голографических методов / под. ред. А. Х. Вопилкина. М.: Машиностроение, 2008. 368 с.
3. Самокрутов А. А., Соколов Н. Ю., Шевалдыкин В. Г. Автоматизированный контроль сварных соединений с применением ультразвуковых антенных решеток // Контроль. Диагностика. 2014. № 3. С. 100 – 104.
4. Advances in Phased Array Ultrasonic Technology Applications / Olympus NDT. 2007. URL: http://www. olympus-ims.com/en/books/ (дата обращения: 14.06.2016)
5. Бадалян В. Г., Базулин А. Е., Вопилкин А. Х., Тихонов Д. С. Особенности разработки методик автоматизированного контроля в ультразвуковой дефектометрии // Контроль. Диагностика. 2017. № 3. С. 26 – 37.
6. Бадалян В. Г. Оценка результатов контроля по акустическим изображениям // Дефектоскопия. 2007. № 4. С. 39 – 58.
7. Бадалян В. Г. Погрешность измерения дефектов с использованием систем с когерентной обработкой данных // Дефектоскопия. 2003. № 3. С. 12 – 23.
8. Бадалян В. Г., Вопилкин А. Х. Мониторинг сварных соединений трубопроводов с использованием систем автоматизированного УЗК с когерентной обработкой данных // В мире неразрушающего контроля. 2004. № 4. С. 22 – 27.
9. Бадалян В. Г. Оценка достоверности результатов УЗК в аустенитных сварных соединениях (с применением когерентных систем) // Контроль. Диагностика. 2016. № 12. С. 4 – 9.
10. Волченко В. Н. Вероятность и достоверность оценки качества металлопродукции. М.: Металлургия, 1979. 88 с.
11. Nockemann C., Heidt H. and Thomsen N. Reliability in NDT: ROC study of radio graphic weld inspections // NDT&E International. 1991. V. 24. No. 5. P. 235 – 245.
12. Visser W. POD/POS curves for non-destructive examination. HSE Offshore Technology Report 2000/18, 2002.
13. Berens A. P. Probability of detection (PoD) analysis for the advanced retirement for cause (RFC) /engine structural integrity program (ENSIP) nondestructive evaluation (NDE) system development volume 1 – PoD analysis. Final report 2000, р. 88. AFRL-ML-WP-TR-2001-4010.
14. Georgiou G. A. Probability of Detection (PoD) curves. Derivation, applications and limitations // Research report. 2006. No. 454. Р. 27.
15. Круглов Б. А. Функции выявляемости трещин при эксплуатационном ультразвуковом контроле корпусов реакторов ВВЭР-1000 системой СК187 // Вопросы материаловедения. 2002. № 4. С. 107 – 118.
16. Jenson E., Iakovleva F. C. Evaluation of POD Curves Based on Simulation Results // 7th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components, 2009.
17. Spies M., Rieder H. Enhancement of the POD of Flaws in the Bulk of Highly Attenuating Structural Materials by Using SAFT Processed Ultrasonic Inspection Data // 4th European-American Workshop on Reliability of NDE, 2009.
18. Алешин Н. П., Вадковский Н. Н., Волкова Н. Н. Ультразвуковой контроль аустенитных сварных швов: анализ способов и рекомендации по повышению надежности // Дефектоскопия. 1988. № 2. С. 43 – 59.
19. Бадалян В. Г., Вопилкин А. Х. Опыт применения ультразвуковой системы с когерентной обработкой данных «АВГУР» на российских АЭС // Контроль. Диагностика. 2000. № 9. С. 35 – 39.
20. Алешин Н. П., Вадковский Н. Н., Волкова Н. Н. Ультразвуковой контроль аустенитных сварных швов: анализ способов и рекомендации по повышению надежности // Дефектоскопия. 1988. № 2. С. 43 – 59.
21. Ogilvy I. A. Ultrasonic beam profiles and beam propagation in austenitic weld using a theoretical ray tracing model // Ultrasonics.1986. Nо. 11. P. 337 – 347.
22. Бадалян В. Г. Анализ достоверности контроля в УЗ-дефектометрии // Контроль. Диагностика. 2019. № 3. С. 4 – 13.
23. Carvalho A. A., Rebello J. M. A., Silva R. R., Sagrilo L. V. S. Reliability of the manual and automatic ultrasonic technique in the detection of pipe weld defects // Insight. 2006. V. 48. Nо. 11. P. 1 – 6.
24. Lilley J. The Integration of Plant Condition Assessment with Risk Management Programmes // 9th European Conference on Non Destructive Testing, 2006.
25. Щербинский В. Г. Технология ультразвукового контроля сварных соединений. М.: Тиссо, 2003. 313 с.
26. Jacques F., Moreau F., Ginzel E. Ultrasonic backscatter sizing using phased array – developments in tip diffraction flaw sizing // Insight. Non-Destructive Testing and Condition Monitoring. 2003. V. 45. No. 11. P. 724 – 728.
27. Бадалян В. Г., Вопилкин А. Х., Гребенников В. В., Гребенников Д. В. Сравнительный анализ способов повышения отношения сигнал/шум при ультразвуковом контроле аустенитных швов // Контроль. Диагностика. 2000. № 9. С. 29 – 35.
28. Бадалян В. Г., Вопилкин А. Х., Доленко С. А., Орлов Ю. В., Персианцев И. Г. Алгоритмы обработки данных для автоматизации работы ультразвуковых систем с когерентной обработкой данных // Дефектоскопия. 2004. № 12. С. 3 – 15.
29. Базулин Е. Г. Определение типа отражателя по изображению, восстановленному по эхосигналам, измеренным ультразвуковыми антенными решетками // Дефектоскопия. 2014. № 3. С. 12 – 22.
30. Fawcett T. ROC Graphs: Notes and Practical Considerations for Researchers. Kluwer Acad. Publ., 2004. 38 p.
31. Ван дер Верден. Математическая статистика. М.: ИЛ, 1960. 436 с.
32. Fucsok F., Muller C., Scharmach M. Measuring of the reliability of NDE // The 8 Int. Conf. of the Slovenian Society for NDT «Application of Сontemporary Non-Destructive Testing in Engineering», Slovenia, 2005. Р. 173 – 180.
33. Методика автоматизированного ультразвукового контроля кольцевых сварных соединений аустенитных трубопроводов Ду300 реакторов РБМК с применением системы «АВГУР 5.2» / АО «Концерн Росэнергоатом». М., 2006.
34. Иванов В. И., Коновалов Н. Н., Котельников В. С. и др. Вопросы оценки риска аварии с использованием технического диагностирования // Контроль. Диагностика. 2015. № 3. С. 12 – 20.
35. Бадалян В. Г. Возможности ультразвуковой дефектометрии и рискориентированный подход в диагностике // Контроль. Диагностика. 2019. № 1. С. 22 – 31.
36. Базулин А. Е., Базулин Е. Г., Коколев С. А. и др. Система автоматизированного контроля «АВГУР-АРТ» – от искусства новых возможностей к практической диагностике // Ультразвуковая дефектометрия. 25 лет: юбилейный сборник трудов ООО НПЦ «ЭХО+» / под ред. А. Х. Вопилкина. М.–СПб.: СВЕН, 2015. С. 76 – 85.

Eng

1. Ivanov V. I., Konovalov N. N., Kotel'nikov V. S. et al. (2015). Accident risk assessment issues using technical diagnostics. Kontrol'. Diagnostika, (3), pp. 12 – 20. [in Russian language] DOI: 10.14489/td.2015.03.pp.012-020
2. Vopilkin A. H. (Ed.), Badalyan V. G, Bazulin E. G. et al. (2008). Ultrasonic metal defectometry using holographic methods. Moscow: Mashinostroenie. [in Russian language]
3. Samokrutov A. A., Sokolov N. Yu., Shevaldykin V. G. (2014). Automated control of welded joints using ultrasonic antenna arrays. Kontrol'. Diagnostika, (3), pp.100 – 104. [in Russian language] DOI: 10.14489/td.2014.03.pp.100-104
4. Advances in Phased Array Ultrasonic Technology Applications. (2007). Olympus NDT. Available at: http://www.olympus-ims.com/en/books/ (Accessed: 14.06.2016)
5. Badalyan V. G., Bazulin A. E., Vopilkin A. H., Tihonov D. S. (2017). Features of the development of automated control techniques in ultrasonic defectometry. Kontrol'. Diagnostika, (3), pp. 26 – 37. [in Russian language] DOI: 10.14489/td.2017.03.pp.026-037
6. Badalyan V. G. (2007). Assessment of control results by acoustic images. Defektoskopiya, (4), pp. 39 – 58. [in Russian language]
7. Badalyan V. G. (2003). Accuracy of defect measurement using coherent data processing systems. Defektoskopiya, (3), pp. 12 – 23. [in Russian language]
8. Badalyan V. G., Vopilkin A. H. (2004). Monitoring of welded joints of pipelines using automated ultrasonic testing systems with coherent data processing. V mire nerazrushayushchego kontrolya, (4), pp. 22 – 27. [in Russian language]
9. Badalyan V. G. (2016). Reliability assessment of ultrasonic testing results in austenitic welded joints (using coherent systems). Kontrol'. Diagnostika, (12), pp. 4 – 9. [in Russian language] DOI: 10.14489/td.2016.12.pp.004-009
10. Volchenko V. N. (1979). The likelihood and reliability of assessing the quality of metal products. Moscow: Metallurgiya. [in Russian language]
11. Nockemann C., Heidt H. and Thomsen N. (1991). Reliability in NDT: ROC study of radio graphic weld inspections. NDT&E International, Vol. 24, (5), pp. 235 – 245.
12. Visser W. (2002). POD/POS curves for non-destructive examination. HSE Offshore Technology Report 2000/18.
13. Berens A. P. (2000). Probability of detection (PoD) analysis for the advanced retirement for cause (RFC) /engine structural integrity program (ENSIP) nondestructive evaluation (NDE) system development volume 1 – PoD analysis. Final report. Report No. AFRL-ML-WP-TR-2001-4010.
14. Georgiou G. A. (2006). Probability of Detection (PoD) curves. Derivation, applications and limitations. Research report, 454.
15. Kruglov B. A. (2002). Crack detection functions during operational ultrasonic inspection of VVER-1000 reactor vessels by SK187 system. Voprosy materialovedeniya, (4), pp. 107 – 118. [in Russian language]
16. Jenson E., Iakovleva F. C. (2009). Evaluation of POD Curves Based on Simulation Results. 7th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components.
17. Spies M., Rieder H. (2009). Enhancement of the POD of Flaws in the Bulk of Highly Attenuating Structural Materials by Using SAFT Processed Ultrasonic Inspection Data. 4th European-American Workshop on Reliability of NDE.
18. Aleshin N. P., Vadkovskiy N. N., Volkova N. N. (1988). Ultrasonic inspection of austenitic welds: analysis of methods and recommendations for improving reliability. Defektoskopiya, (2), pp. 43 – 59. [in Russian language]
19. Badalyan V. G., Vopilkin A. H. (2000). The experience of using the ultrasonic system with coherent data processing "AUGUR" at Russian nuclear power plants. Kontrol'. Diagnostika, (9), pp. 35 – 39. [in Russian language]
20. Aleshin N. P., Vadkovskiy N. N., Volkova N. N. (1988). Ultrasonic inspection of austenitic welds: analysis of methods and recommendations for improving reliability. Defektoskopiya, (2), pp. 43 – 59. [in Russian language]
21. Ogilvy I. A. (1986). Ultrasonic beam profiles and beam propagation in austenitic weld using a theoretical ray tracing model. Ultrasonics, (11), pp. 337 – 347.
22. Badalyan V. G. (2019). Analysis of the reliability of control in ultrasonic defectometry. Kontrol'. Diagnostika, (3), pp. 4 – 13. [in Russian language] DOI: 10.14489/td.2019.03.pp.004-013
23. Carvalho A. A., Rebello J. M. A., Silva R. R., Sagrilo L. V. S. (2006). Reliability of the manual and automatic ultrasonic technique in the detection of pipe weld defects. Insight, Vol. 48, (11), pp. 1 – 6.
24. Lilley J. (2006). The Integration of Plant Condition Assessment with Risk Management Programmes. 9th European Conference on Non Destructive Testing.
25. Shcherbinskiy V. G. (2003). Technology of ultrasonic testing of welded joints. Moscow: Tisso. [in Russian language]
26. Jacques F., Moreau F., Ginzel E. (2003). Ultrasonic backscatter sizing using phased array – developments in tip diffraction flaw sizing. Insight. Non-Destructive Testing and Condition Monitoring, Vol. 45, (11), pp. 724 – 728.
27. Badalyan V. G., Vopilkin A. H., Grebennikov V. V., Grebennikov D. V. (2000). Comparative analysis of ways to increase the signal-to-noise ratio with ultrasonic inspection of austenitic joints. Kontrol'. Diagnostika, (9), pp. 29 – 35. [in Russian language]
28. Badalyan V. G., Vopilkin A. H., Dolenko S. A., Orlov Yu. V., Persiantsev I. G. (2004). Data processing algorithms for automating the operation of ultrasonic systems with coherent data processing. Defektoskopiya, (12), pp. 3 – 15. [in Russian language]
29. Bazulin E. G. (2014). Determining the type of reflector from an image reconstructed from echo signals measured by ultrasonic antenna arrays. Defektoskopiya, (3), pp. 12 – 22. [in Russian language]
30. Fawcett T. (2004). ROC Graphs: Notes and Practical Considerations for Researchers. Kluwer Academic Publishers.
31. Van der Verden (1960). Math statistics. Moscow: IL. [in Russian language]
32. Fucsok F., Muller C., Scharmach M. (2005). Measuring of the reliability of NDE. The 8 International Conference of the Slovenian Society for NDT «Application of Сontemporary Non-Destructive Testing in Engineering», pp. 173 – 180.Slovenia.
33. Technique of automated ultrasonic testing of ring welded joints of austenitic pipelines Du300 of RBMK reactors using the AVGUR 5.2 system. (2006). Moscow: AO «Kontsern Rosenergoatom». [in Russian language]
34. Ivanov V. I., Konovalov N. N., Kotel'nikov V. S. et al. (2015). Accident risk assessment issues using technical diagnostics. Kontrol'. Diagnostika, (3), pp. 12 – 20. [in Russian language] DOI: 10.14489/td.2015.03.pp.012-020
35. Badalyan V. G. (2019). Possibilities of ultrasonic defectometry and risk-based approach in diagnostics. Kontrol'. Diagnostika, (1), pp.22 – 31. [in Russian language] DOI: 10.14489/td.2019.01.pp.022-031
36. Vopilkin A. H. (Ed.), Bazulin A. E., Bazulin E. G., Kokolev S. A. et al. (2015). Automated control system "AUGUR-ART" - from the art of new opportunities to practical diagnostics. Ultrasonic defectometry. 25 years: jubilee collection of works of OOO NPTs «EKhO+», pp. 76 – 85. Moscow–Saint Petersburg: SVEN. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2020.07.pp.004-017

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.07.pp.004-017

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования