Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2020, 08 August

DOI: 10.14489/td.2020.08.pp.030-043

Belovolov M. I., Kozelskaya S. O., Budadin O. N., Kutyurin V. Yu.
CURRENT STATE OF METHODS AND MEANS OF REGISTRATION OF HIGH TEMPERATURES AND MECHANICAL STRESSES IN STRUCTURES
(pp. 30-43)

Abstract. An analytical review of physically possible methods and available achievements in registering hydrostatic pressure or mechanical stresses using fiber optic fibers and sensors based on them based on published works that can be used in harsh environmental conditions is carried out. The results of the review show that fully distributed or quasidistributed fiber-optic systems for recording hydrostatic pressure or mechanical stress can be implemented on the following physical principles and apparatus with measures to compensate or suppress the influence of temperature: polarizing sensors on birefringent single- mode light guides and OTDR equipment; micro-flexible sensors with OTDR equipment on conventional multimode fibers; measuring systems on fiber Bragg gratings; on discrete sensors, in particular, on sealed fiber Fabry–Perot interferometers; Brillouin distributed sensors on single-mode fibers that are not sensitive to temperature changes. It is shown that single-mode birefringent fibers with hollow holes in the shell and fiber Bragg gratings written in the core have a good linear sensitivity to hydrostatic pressure and a weak dependence on temperature. Lattices in phosphorous-containing single-mode light guides have increased high-temperature properties up to ~500 C and higher. A number of discrete fiber sensors’ structures and pressure recorders are investigated. Various structures of sensitive elements of pressure sensors on sealed fiber Fabry–Perot interferometers and fiber gratings in spherical and cylindrical small-sized cases are investigated. Sensors based on Fabry–Perot fiber interferometers soldered into a glass capillary and protected from water by external high-temperature hermetic coatings showed good linearity in the pressure range of 0…540 ATM at temperatures up to ~200 C. The sensors are efficient at temperatures up to 600 °C and are promising for use in severe and special external conditions. The possibility of compensating the temperature sensitivity by selecting external coatings is shown. Pressure sensors were tested on local areas with microbends and it was shown that they can measure pressures up to ~24 МPа at temperatures up to ~450 C, but to compensate for the dependence of the readings on temperature, it must be measured by an independent sensor. The possibility of independent and simultaneous measurement of hydrostatic pressure and temperature along a single fiber using spontaneous Brillouin scattering is shown. Pressure is measured by the frequency shift of Brillouin scattering, and temperature by its intensity. The operation of the Brillouin recorder in the pressure range 0…34 MРа is demonstrated. The pressure resolution was ~0,2 МРа. New methods are proposed for detecting Brillouin scattering – a heterodyne signal with a high signal-to-noise ratio and based on frequency modulation of a semiconductor single-frequency distributed feedback laser. The measurement range has been increased by more than 10 km and the coordinate resolution has been increased. The Brillouin scattering method is promising for creating distributed systems for measuring hydrostatic pressure or mechanical stress for severe physical conditions, including temperatures of ≥3000 C.

Keywords: mechanical stress, temperature, measurement error, fiber optics, sensors.

M. I. Belovolov (Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozelskaya, O. N. Budadin, V. Yu. Kutyurin (JSC “CRISM”, Khotkovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Main directions

1. Rogers A. J. (1991). Distributed opticalfibre sensing. SPIE, Vol. 1511, pp. 2 – 24.
2. Kul'chin Yu. N. (1999). Distributed fiber optic sensors and measuring networks. Vladivostok: Dal'nauka. [in Russian language]
3. Dakin J. P. (1992). Distributed optical fiber sensors. SPIE, Vol. 1797, pp. 76 – 108.
4. Schroeder R. J., Ramos R. T., Yamate T. (1999). Fiber optic sensors for oilfield services. SPIE, Vol. 3860, pp. 12 – 22.
5. Lequime M., Lecot C. (1991). Fiber optic pressure and temperature sensor for down-hole applications. SPIE, Vol. 1511, pp. 244 – 249.
6. Horiguchi T., Kurashima T., Koyamada Y. (1992). Measurement of temperature and strain distribution by Brilluoin frequency shift in silica optical fiber. SPIE, Vol. 1797, pp. 2 – 13.
7. Kersey A. D. (1992). Multiplexed fiber optic sensors. SPIE, Vol. 1797, pp. 161 – 185.
8. Holton C. E., Parker M. J. (1999). Fiber optics in meteorolological instrumentation suites. SPIE, Vol. 3860, pp. 131 – 142.

Distributed Polarization Sensors

9. Kluth E. L. E., Varnham M. P., Clowers J. R., Kutlik R. (1999). Upgradable sensing systems for the oil and gas industry. SPIE, Vol. 3860, pp. 262 – 272.
10. Rojers A., Handerek V., Parvaneh F. (1991). Frequency-derived distributed optical-fiber sensing: Backscatter analysis. SPIE, Vol. 1511, pp. 190 – 200.
11. Bock W. J., Wolinski T. R., Domanski A. W. (1991). All-fiber pressure sensor up to 100 MPa. SPIE, Vol. 1511, pp. 250 – 254.
12. Lu Haibao, Chu Xingchun, Luo Wusheng et al. (1998). Research of the distributed fiber optic pressure sensor. SPIE, Vol. 3555, pp. 343 – 347.
13. Luo Fei, Yan Muolin, Huang Shanglian. (1990). Distributed fiber optic pressure sensor. SPIE, Vol. 1367, pp. 221 – 224.

Micro-bend distributed fiber pressure sensors

14. Lu Xiaoming, Ren Xin, Chen Yubo, Chi Rongsheng. (1991). Research of distributed fiber optic pressure sensor. SPIE, Vol. 1572, pp. 304 – 307.
15. MacLean A., Moran C., Johnstone W. et al. (2000). A distributed fibre optic sensor for hydrocarbon detection. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, pp. 382 – 385.

Fiber Bragg Pressure Gauges

16. Qiao X., Fiddy M. (2002). Distributed optical fiber Bragg grating sensor for simultaneous measurement of pressure and temperature in the oil and gas downhole. SPIE, Vol. 4870, pp. 554 – 558.
17. Scroeder R. J., Yamate Ts., Udd E. (1999). High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber. SPIE, Vol. 3746, pp. 42 – 45.
18. Kersey A. D., Didden F. K. (1999). CiDRA: Leveraging multichannel telecommunications technology for enhanced downhole monitoring capabilities in the oil & gas industry. SPIE, Vol. 3860, pp. 35 – 41.
19. Clowes J. R., McInnes J., Zervas M. N., Payne D. N. (1997). Effects of high temperature and pressure on silica optical fiber sensors. Technical digest of 12th International Conference on Optical Fiber Sensors, pp. 626 – 629. Williamsburg: Williamsburg Marriott.
20. Canning J., Englud M., Sommer K. (2000). Fiber Gratings for High Temperature Sensor Applications. 14th International Conference on Optical Fiber Sensors. Venice: Postdeadline Papers. Enclosed to SPIE, Vol. 4185, pp. 1 – 4.
21. Yamate T., Ramos R. T., Schroeder R. J., Udd E. (2000). Thermally insensitive pressure measurement up to 300 degree C using fiber Bragg gratings written onto side hole single mode fiber. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, pp. 628 – 631.
22. Xu M. G., Geiger H., Dakin J. P. (1996). Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electronics Letters, Vol. 32, (2), pp. 128–129.
23. Liu T., Fernando G. F., Zhang L. et al. (1997). Simultaneous strain and temperature measurement using a combined fiber Bragg grating/extrinsic Fabry-Perot sensor. 12th International Conference on Optical Fiber Sensors, pp. 40 – 43. Williamsburg.

Discrete (point) fiber pressure sensors

24. Qi B., Pickrell G. R., Zhang P. et al. (2002). Fiber optic pressure and temperature sensors for oil down hole application. SPIE, Vol. 4578, pp. 182 – 190.
25. May R. G., Wang A., Xiao H. et al. (1999). SCIIB Pressure Sensor for Oil Extraction Applications. SPIE, Vol. 3852, pp. 20 – 35.
26. Wen X., Yaosheng C., Wei G., Mingqiu X. (1991). The fiber optical sensor applied to measure the high temperature under the high pressure condititon. SPIE, Vol. 1572, pp. 170 – 174.
27. Berthold J. W. (1991). Field test results on fiber-optic pressure transmitter system. SPIE, Vol. 1584, pp. 39 – 47.
28. Majercak D., Sernas V., Polymeropoulos C. E. and Sigel G. H. Jr. (1991). A microbend pressure sensor for high temperature environments. SPIE, Vol. 1584, pp. 162 – 169.
29. Jeong Y., Baek S., Lee B. (2000). A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, Part. 3-05, pp. 700 – 703.
30. Helmig Ch., Merte R., Temmen K. (2000). Optical partial discharge sensor for on-line-monitoring of oil insulated transformers. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, Part. 1-09, pp. 70 – 73.

Brillouin reflectometers for measuring pressure

31. Parker T. R., Farhadirousan M., Diatzikis E. et al. (2000). Simultaneous optical fibre distributed measurement of pressure and temperature using noise-initiated Brillouin scattering. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, Part 3-23, pp. 772 – 775.
32. Maughan S. M., Kee H. H., Newson T. P. (2000). Novel distributed fibre sensor using microwave heterodyne detection of spontaneous Brillouin backscatter. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, Part. 3-25, pp. 780 – 783.
33. Horiguchi T., Kurashima T., Koyamada Y. (1997). Measurement of temperature and strain distribution by Brillouin frequency shift in silica optical fibers. SPIE, Vol. 1797, pp. 2 – 13.
34. Hasegawa T., Hotate K. (1999). Measurement of Brillouin gain spectrum distribution along an optical fiber by direct frequency modulation of a laser diode. SPIE, Vol. 3860, pp. 306 – 316.
35. Kee H. H., Newson T. P. (2000). 1,5m Brillouin-based fibre optic distributed temperature sensor with high spatial resolution of 20cm. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, Part. 3-30, pp. 800 – 803.

Polarimetric and bending pressure sensors

36. Clowes J., Edwards J., Grudinin I. et al. (1999). Low drift fibre optic pressure sensor for oil field downhole monitoring. Electronic Letters, Vol. 35, (11).
37. Donlagic D., Culshaw B. (2000). A forward propagation fully distributed microbend sensor system. 14th International Conference on Optical Fiber Sensors. Venice. SPIE, Vol. 4185, pp. 662 – 665.
38. Lecoy P., Malki A., Dammak H. et al. (1956). A new pressure optical sensor for distributed sensing. Proceedings SPIE, Vol. 1586, pp. 96 – 106.
39. Kulchin Yu. N., Vitrik O. B., Perfilyev V. G. (1999). Sensitive element and quasi distributed fiber-optic sensor for bending deformations. SPIE, Vol. 3860, pp. 362 – 365.
40. Michie W. C., Thursby G., McLean A. et al. (1997). Fiber optic sensor for distributed water ingress detection and humidity measurement. Technical digest of 12th International, pp. 634 – 637. Conference on Optical Fiber Sensors. Williamsburg: Williamsburg Marriott.

Temperature Coefficients

41. Priest T. S., Jones K. T., Scelisi G. B., Woolsey G. A. (1997). Thermal coefficients of refractive index and expansion in optical fiber sensing. 12th International Conference on OFS. Technical Digest, Vol. 16, pp. 306 – 309.

Additional sources

Ad.1. Johnson A., Michelson P. New real-time fiber-optic downhole instrumentation systems designed for permanent installation / Sabeus Sensor Systems Sabeus Sensor System Introduces Ultra-robust, Real-time Pressure-Temperature-Vibration and Real-time Distributed Temperature Sensing Systems. For Immediate Release, pp. 1 – 3. Available at: www.sabeus.com
Ad.2. New realtime downhole fiber-optic monitoring system launched at SEG / Oil and Gas International. Available at: www.oilandgasinternational.com
Ad.3. Masound A., Newson Tr. P. (2006). Contributed Review: Distributed optical fibre dynamic strain sensing. Review of Scientific Instruments, Vol. 87, (1). Available at: http://doi.org/10.1063/1.4939482
Ad.4. SpecTran Corporation, SpecTraguide, PYROCOAT Heat-Resistant Coating, 50 Hall Road, Strubridge, MA 01566.
Ad.5. Paulo T., Benn V., Brian B. et al. Monitoring of downhole parameters and tools utilizing fiber optics. Patent No. US6268911.
Ad.6. Didden F. K., Hay A. D. Distributed selectable latent fiber optic sensors. Patent No. US6271766.
Ad.7. Olge P. C., Gysling D. L. Mandrel-wound fiber optic pressure sensor. Patent No. US6233374.
Ad.8. Kersey A. D., Daigle G. A, D. J. R. et al. Fused tension-based fiber grating pressure sensor. Patent No. US6490931.
Ad.9. Pruett P. E., Davis A. R. et al. Fiber optic bragg grating pressure sensor. Patent No. US6278811.
Ad.10. Maron R. J. High sensitivity fiber optic pressure sensor for use in harsh environments. Patent No. US6016702.

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.08.pp.030-043

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования