Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2021, 07 июль (July)

DOI: 10.14489/td.2021.07.pp.024-033

Артемьев Б. В., Артемьев И. Б., Власов А. И., Жалнин В. П.
МЕТОДЫ И СРЕДСТВА АВТОМАТИЗИРОВАННОГО КОНТРОЛЯ МЕМРИСТИВНЫХ СТРУКТУР
(c. 24-33)

Аннотация. Рассматриваются некоторые методы и средства автоматизированного контроля мемристивных структур, являющихся на сегодняшний день очень перспективными элементами для создания новых устройств памяти, а также нейронных сетей. Проведен обзор литературы по данной теме. Дано описание измерительного комплекса, разработанного авторами. С помощью измерительного комплекса осуществлены измерения электрических параметров мемристивных структур. Представлены экспериментальные данные, которые позволили предложить модификацию мемристивной структуры в целях повышения стабильности ее работы.

Ключевые слова:  измерение ВАХ, мемристор, smart-системы, зондовые станции, нанометровая структура.

 

Artemiev B. V., Artemyev I. B., Vlasov A. I.. Zhalnin V. P.
METHODS AND MEANS OF AUTOMATED CONTROL OF MEMRISTOR STRUCTURES
(pp. 24-33)

Abstract. The article discusses some methods and means of automated control of memristive structures, which are currently very promising elements for creating new memory devices, as well as neural networks. A review of the literature on this topic is carried out. The description of the measuring complex developed by the authors is given. The measuring complex was used to measure the electrical parameters of the memristor structures. Experimental data are presented, which made it possible to propose a modification of the memristor structure in order to increase the stability of its operation.

Keywords: characteristic measurement, memristor, smart systems, probe stations, nanometer structure.

Рус

Б. В. Артемьев, И. Б. Артемьев, А. И. Власов, В. П. Жалнин (МГТУ им. Н. Э. Баумана, Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

B. V. Artemiev, I. B. Artemyev, A. I. Vlasov, V. P. Zhalnin (Bauman Moscow State Technical University, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Гудков А., Гогин А., Кик М. и др. Мемристоры – новый тип элементов резистивной памяти для наноэлектроники // Электроника НТБ. 2014. № 9. С. 156 – 162.
2. Бирюков Г. И., Жалнин В. П., Лаптев Д. В., Репников П. О. Особенности реализации сверточных нейронных сетей на программируемой логической интегральной схеме ARTIX-7 // Нейрокомпьютеры: разработка, применение. 2020. Т. 22, № 3. С. 26 – 35.
3. Власов А. И., Жалнин В. П., Шахнов В. А., Алябьев И. О. Возможности применения перспективной нейросетевой элементной базы на основе неорганических мемристоров // Нейрокомпьютеры и их применение // XVII Всерос. науч. конф.: тезисы докладов. Москва, 19 марта 2019 г. М., 2019. С. 242 – 245.
4. Vlasov A. I., Gudoshnikov I. V., Zhalnin V. P. et al. Market for memristors and data mining memory structures for promising smart systems // Entrepreneurship and Sustainability Issues. 2020. V. 8, No. 2. P. 98 – 115.
5. Елисеев Н. Мемристоры и кроссбары. Нанотехнологии для процессоров // Электроника НТБ. 2010. Вып. 8. С. 84 – 89.
6. Ковалев А. В., Малюков С. П., Кальсков А. В. Метод построения функциональных блоков плис на основе мемрезистивных элементов // Современные проблемы науки и образования. 2013. № 6.
7. Ho Y., Huang G. M., Li P. Nonvolatile Memristor Memory: Device Characteristics and Design Implications // Proc. of the Intern. Conf. on Computer-Aided Design, 2009. Р. 485 – 490.
8. Krems М., Pershin Y. V., Di Ventra М. Ionic memcapacitive effects in nanopores // NanoLett. 2010. No. 10. P. 2674 – 2678.
9. Berzina T., Camorani P., Erokhin V. et al. Electrochemical control of the conductivity in an organic memristor: a time-resolved x-ray fluorescence study of ionic drift as a function of the applied voltage // ACS Applied materials & interfaces. 2009. V. 1, No. 10. P. 2115 – 2118.
10. Pat. CN 101630662. Manufacturing method for protein structure quick switch memristor array / W. Dianzhong. 20.02.2010.
11. Kirn Т. Н., Cheon J. W., Jang J.-T. Nanoparticle assembly-based switching device. Международная патентная заявка PCT/EP 2010062127. Дата 03.06.2010.
12. Kirn Т. Н., Jang E. Y., Lee N. J. et al. Nanoparticle Assemblies as Memristors // Nano Lett. 2009. V. 9, No. 6. P. 2229 – 2233.
13. Wong H. S. P., Lee H. Y., Yu S., et al. Metal–oxide RRAM // Proceedings of the IEEE, 2012. V. 100, No. 6. P. 1951 – 1970.
14. Жалнин В. П., Плаксин А. Н., Соловьев В. А. Стенд для контроля работоспособности полупроводниковых приборов и снятия их вольт-амперных характеристик // Технологии инженерных и информационных систем. 2018. № 1. С. 41 – 47.
15. Нестеров Ю. И., Власов А. И., Першин Б. Н. Виртуальный измерительный комплекс // Датчики и системы. 2000. № 4. С. 12 – 22.
16. Zhalnin V. P., Shakhnov V. A., Vlasov A. I. Methods for improvement of the consistency and durability of the inorganic memristor structures // International Journal of Nanotechnology. 2019. V. 16, No. 1 – 3. P. 187 – 195.

Eng

1. Gudkov A., Gogin A., Kik M. et al. (2014). Memristors - a new type of resistive memory elements for nanoelectronics. Elektronika NTB, (9), pp. 156 – 162. [in Russian language]
2. Biryukov G. I., Zhalnin V. P., Laptev D. V., Repnikov P. O. (2020). Features of the implementation of convolutional neural networks on the ARTIX-7 programmable logic integrated circuit. Neyrokomp'yutery: razrabotka, primenenie, Vol. 22, (3), pp. 26 – 35. [in Russian language]
3. Vlasov A. I., Zhalnin V. P., Shahnov V. A., Alyab'ev I. O. (2019). Possibilities of using a promising neural network element base based on inorganic memristors. Neurocomputers and their applications. XVII All-Russian Scientific Conference: Abstracts, pp. 242 – 245. Moscow. [in Russian language]
4. Vlasov A. I., Gudoshnikov I. V., Zhalnin V. P. et al. (2020). Market for memristors and data mining memory structures for promising smart systems. Entrepreneurship and Sustainability Issues, Vol. 8, (2), pp. 98 – 115.
5. Eliseev N. (2010). Memristors and crossbars. Nanotechnology for processors. Elektronika NTB, (8), pp. 84 – 89. [in Russian language]
6. Kovalev A. V., Malyukov S. P., Kal'skov A. V. (2013). Method of constructing functional blocks of plies based on memresistive elements. Sovremennye problemy nauki i obrazovaniya, (6). [in Russian language]
7. Ho Y., Huang G. M., Li P. (2009). Nonvolatile Memristor Memory: Device Characteristics and Design Implications. Proceedings of the International Conference on Computer-Aided Design, pp. 485 – 490.
8. Krems М., Pershin Y. V., Di Ventra М. (2010). Ionic memcapacitive effects in nanopores. Nano Letters, (10), pp. 2674 – 2678.
9. Berzina T., Camorani P., Erokhin V. et al. (2009). Electrochemical control of the conductivity in an organic memristor: a time-resolved x-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Applied materials & interfaces, Vol. 1, (10), pp. 2115 – 2118.
10. Manufacturing method for protein structure quick switch memristor array. Patent No. CN 101630662.
11. Kirn Т. Н., Cheon J. W., Jang J.-T. (2010). Nano-particle assembly-based switching device.
12. Kirn Т. Н., Jang E. Y., Lee N. J. et al. (2009). Nanoparticle Assemblies as Memristors. Nano Letters, Vol. 9, (6), pp. 2229 – 2233.
13. Wong H. S. P., Lee H. Y., Yu S., et al. (2012). Metal–oxide RRAM. Proceedings of the IEEE, Vol. 100, (6), pp. 1951 – 1970.
14. Zhalnin V. P., Plaksin A. N., Solov'ev V. A. (2018). Stand for monitoring the performance of semiconductor devices and taking their current-voltage characteristics. Tekhnologii inzhenernyh i informatsionnyh sistem, (1), pp. 41 – 47. [in Russian language]
15. Nesterov Yu. I., Vlasov A. I., Pershin B. N. (2000). Virtual measuring complex. Datchiki i sistemy, (4), pp. 12 – 22. [in Russian language]
16. Zhalnin V. P., Shakhnov V. A., Vlasov A. I. (2019). Methods for improvement of the consistency and durability of the inorganic memristor structures. International Journal of Nanotechnology, Vol. 16, (1 – 3), pp. 187 – 195.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 450 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2021.07.pp.024-033

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.01.pp.003-012

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования