Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2021, 10 октябрь (October)

DOI: 10.14489/td.2021.10.pp.018-027

Морозов А. Л.
КОМБИНИРОВАННЫЙ МЕТОД ОБРАБОТКИ ВИБРОСИГНАЛОВ ДЛЯ ДИАГНОСТИКИ И КОНТРОЛЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ, ОПТИМИЗИРОВАННЫЙ ДЛЯ ВСТРАИВАЕМЫХ СИСТЕМ
(c. 18-27)

Аннотация. Рассмотрены существующие методы обработки вибросигналов для решения задач диагностики и контроля, выделены их основные преимущества и недостатки с точки зрения возможности их реализации во встраиваемых системах. Предложенный ранее метод обработки сигналов на основе комбинации быстрого преобразования Фурье и статистики дробных моментов оптимизирован для обработки вибросигналов и реализации во встраиваемых системах. Эффективность диагностики таких неисправностей, как эксцентриситет и дефект в стержне ротора, с помощью предложенного метода верифицирована на измерениях радиальных вертикальных вибраций реальных двигателей под разными уровнями постоянной нагрузки: без нагрузки, 50 % от номинальной нагрузки, 75 % от номинальной нагрузки. Результаты исследований показывают, что такой подход позволяет точно диагностировать рассмотренные неисправности независимо от уровня нагрузки.

Ключевые слова:  асинхронные двигатели, контроль состояния, диагностика, обнаружение неисправностей, обработка сигналов, вибрационный анализ, быстрое преобразование Фурье, статистика дробных моментов.

 

Morozov A. L.
COMBINED SIGNAL PROCESSING METHOD FOR DIAGNOSIS AND MONITORING OF THE INDUCTION MOTORS OPTIMIZED FOR EMBEDDED SYSTEMS
(pp. 18-27)

Abstract. Induction Motors (IM) play a key role in modern industry, so the condition monitoring systems are becoming increasingly relevant. Commercial monitoring systems are usually based on the measurement of IM’s vibrations and the further processing of the measured vibration signals. For those purposes the embedded systems (such as microcontrollers and inexpensive processors) are used. Embedded systems have limited resources, so data processing algorithms should have low computational complexity and require little memory. In this paper, the wellknown methods of processing vibration signals for fault diagnosis of the IM are considered and their main advantages and disadvantages for the implementation in embedded systems are highlighted. The previously proposed method based on a combination of the fast Fourier transform and the statistics of the fractional moments is optimized for vibration signal processing and implementation in embedded systems. The efficiency of diagnosis of such faults as eccentricity and a broke rotor bar, using the proposed method, is verified on the radial vertical vibrations measurements of the real motors under different constant load levels: no load, 50 % of the rated load, 75% of the rated load. The results show that this approach allows accurately diagnose the considered faults independently from the load level.

Keywords: induction motors, condition monitoring, diagnosis, fault detection, diagnosis, fault detection, signal processing, vibration analysis, fast Fourier transform, statistics of the fractional moments.

Рус

А. Л. Морозов (Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ, Казань, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Eng

A. L. Morozov (Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Waide P., Brunner C. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems // IEA Energy Papers. 2011. No. 7.
2. Сарапулов Ю. В., Сидоров В. А., Сушко А. Е., Хасанов Р. А. Прогнозирование изменений технического состояния подшипника качения по значениям виброускорения // Контроль. Диагностика. 2020. № 10. С. 12 – 19.
3. Зубренков Б. И., Маслов К. Г. Частотная вибродиагностика асинхронных двигателей шпиндельного исполнения на подшипниках качения // Вопросы электромеханики. Тр. ВНИИЭМ. 2009. Т. 108, № 1. С. 19 – 24.
4. Лукьянов А. В., Мухачев Ю. С., Бельский И. О. Исследование комплекса параметров вибрации и внешнего магнитного поля в задачах диагностики асинхронных электродвигателей // Системы. Методы. Технологии. 2014. Т. 22, № 2. С. 61 – 69.
5. Güçlü S., Ünsal A., Ebeoğlu M. Vibration Analysis of Induction Motors with Unbalanced Loads // 10th International Conference on Electrical and Electronics Engineering (ELECO). 2017. Р. 365 – 369.
6. Калинов А. П., Браташ О. В. Анализ методов вибродиагностики асинхронных двигателей // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2012. Т. 5. С. 43 – 51.
7. Кан Ш., Микулович А. В., Микулович В. И. Спектральный анализ огибающей высокочастотных составляющих сложных сигналов на основе эмпирической декомпозиции мод и преобразования Гильберта // Информатика. 2010. Т. 28, № 4. С. 16 – 24.
8. Delgado-Arredondo P. A., Morinigo-Sotelo D., Osornio-Rios R. A., et al. Methodology for fault detection in induction motors via sound and vibration signals // Mechanical Systems and Signal Processing. 2017. V. 83. P. 568 – 589.
9. Кан Ш., Микулович А. В., Микулович В. И. Вибрационная диагностика подшипников качения на основе эмпирической декомпозиции мод и машин на опорных векторах // Контроль. Диагностика. 2010. № 12. С. 26 – 35.
10. Кан Ш., Микулович В. И. Применение методов EMD для удаления шумов в вибрационных сигналах // Информационные системы и технологии (IST' 2009): материалы V Международной конференции-форума (Минск, 16 – 17 ноября 2009 г.): в 2 ч. Минск, 2009. Ч. 2. С. 139 – 142.
11. Кан Ш., Микулович В. И. Анализ вибрационных сигналов машин с применением эмпирического метода декомпозиции // Техническая диагностика и неразрушающий контроль. 2010. № 3. С. 41 – 46.
12. Ахметханов Р. С., Дубинин Е. Ф., Куксова В. И. Метод кластеризации диагностических данных при вибродиагностике технических систем // Вестник научно-технического развития. 2017. Т. 117, № 5. С. 3 – 16.
13. Асламов Ю. П., Давыдов И. Г. Вейвлет-функция для диагностики подшипников качения // Вестник Полоцкого государственного университета. Сер. В. Промышленность. Прикладные науки. 2018. № 11. С. 15 – 23.
14. Bellini A., Filippetti F., Tassoni C., Capolino G. Advances in Diagnostic Techniques for Induction Machines // IEEE Transactions On Industrial Electronics. 2008. V. 55, No. 12. P. 4109 – 4126.
15. Jung J., Lee J., Kwon B. Online Diagnosis of Induction Motors Using MCSA // IEEE Transactions on Industrial Electronics. 2006. V. 53, No. 6. P. 1842 – 1852.
16. Morozov A. L., Nigmatullin R. R., Lino P. et al. An Improved Nonparametric Method for Fault Detection of Induction Motors Based on the Statistics of the Fractional Moments // Conference on Control Technology and Applications (CCTA). 2018. P. 386 – 391.
17. Nigmatullin R. R. The statistics of the fractional moments: Is there any chance to “read quantitatively” any randomness? // Journal of Signal Processing. 2006. V. 86. P. 2529 – 2547.
18. Nigmatullin R. R., Ceglie C., Maione G., Striccoli D. Reduced fractional modeling of 3D video streams: the FERMA approach // Nonlinear Dynamics. 2015. V. 80, No. 4. P. 1869 – 1882.
19. Nigmatullin R. R., Smith G. The generalized mean value function approach: A new statistical tool for the detection of weak signals in spectroscopy // Journal of Physics D: Applied Physics. 2005. V. 38, No. 2 P. 328 – 337.
20. Kanović Ž., Matić D., Jeličić Z., et al. Induction Motor Broken Rotor Bar Detection Using Vibration Analysis. A. Case Study. International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED). 2013. P. 118 – 122.

Eng

1. Waide P., Brunner C. (2011). Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems, (7). IEA Energy Papers.
2. Sarapulov Yu. V., Sidorov V. A., Sushko A. E., Hasanov R. A. (2020). Predicting changes in the technical condition of a rolling bearing based on vibration acceleration values. Kontrol'. Diagnostika, (10), pp. 12 – 19. [in Russian language] DOI: 10.14489/td.2020.10.pp.012-019
3. Zubrenkov B. I., Maslov K. G. (2009). Frequency vibration diagnostics of asynchronous motors of spindle design on rolling bearings. Voprosy elektromekhaniki. Trudy VNIIEM, Vol. 108, (1), pp. 19 – 24. [in Russian language]
4. Luk'yanov A. V., Muhachev Yu. S., Bel'skiy I. O. (2014). Investigation of the complex of parameters of vibration and external magnetic field in the problems of diagnostics of asynchronous electric motors. Sistemy. Metody. Tekhnologii, Vol. 22, (2), pp. 61 – 69. [in Russian language]
5. Güçlü S., Ünsal A., Ebeoğlu M. (2017). Vibration Analysis of Induction Motors with Unbalanced Loads. 10th International Conference on Electrical and Electronics Engineering (ELECO), pp. 365 – 369.
6. Kalinov A. P., Bratash O. V. (2012). Analysis of methods for vibration diagnostics of asynchronous motors. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih obyedineniy SNG, Vol. 5, pp. 43 – 51. [in Russian language]
7. Kan Sh., Mikulovich A. V., Mikulovich V. I. (2010). Spectral analysis of the envelope of high-frequency components of complex signals based on empirical mode decomposition and Hilbert transform. Informatika, Vol. 28, (4), pp. 16 – 24. [in Russian language]
8. Delgado-Arredondo P. A., Morinigo-Sotelo D., Osornio-Rios R. A. et al. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, Vol. 83, pp. 568 – 589.
9. Kan Sh., Mikulovich A. V., Mikulovich V. I. (2010). Vibration diagnostics of rolling bearings based on empirical decomposition of modes and machines on support vectors. Kontrol'. Diagnostika, (12), pp. 26 – 35. [in Russian language]
10. Kan Sh., Mikulovich V. I. (2009). Applying EMD Techniques to Remove Noise in Vibration Signals. Information Systems and Technologies (IST '2009): Proceedings of the V International Conference-Forum: in 2 parts. Part 2, pp. 139 – 142. Minsk. [in Russian language]
11. Kan Sh., Mikulovich V. I. (2010). Analysis of vibration signals of machines using the empirical decomposition method. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', (3), pp. 41 – 46. [in Russian language]
12. Ahmethanov R. S., Dubinin E. F., Kuksova V. I. (2017). Method of clustering diagnostic data for vibration diagnostics of technical systems. Vestnik nauchno-tekhnicheskogo razvitiya, Vol. 117, (5), pp. 3 – 16. [in Russian language]
13. Aslamov Yu. P., Davydov I. G. (2018). Wavelet function for rolling bearing diagnostics. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya V. Promyshlennost'. Prikladnye nauki, (11), pp. 15 – 23. [in Russian language]
14. Bellini A., Filippetti F., Tassoni C., Capolino G. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions On Industrial Electronics, Vol. 55, (12), pp. 4109 – 4126.
15. Jung J., Lee J., Kwon B. (2006). Online Diagnosis of Induction Motors Using MCSA. IEEE Transactions on Industrial Electronics, Vol. 53, (6), pp. 1842 – 1852.
16. Morozov A. L., Nigmatullin R. R., Lino P. et al. (2018). An Improved Nonparametric Method for Fault Detection of Induction Motors Based on the Statistics of the Fractional Moments. Conference on Control Technology and Applications (CCTA), pp. 386 – 391.
17. Nigmatullin R. R. (2006). The statistics of the fractional moments: Is there any chance to “read quantitatively” any randomness? Journal of Signal Processing, Vol. 86, pp. 2529 – 2547.
18. Nigmatullin R. R., Ceglie C., Maione G., Striccoli D. (2015). Reduced fractional modeling of 3D video streams: the FERMA approach. Nonlinear Dynamics, Vol. 80, (4), pp. 1869 – 1882.
19. Nigmatullin R. R., Smith G. (2005). The generalized mean value function approach: A new statistical tool for the detection of weak signals in spectroscopy. Journal of Physics D: Applied Physics, Vol. 38, (2), pp. 328 – 337.
20. Kanović Ž., Matić D., Jeličić Z. et al. (2013). Induction Motor Broken Rotor Bar Detection Using Vibration Analysis. A. Case Study. International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), pp. 118 – 122.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 450 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2021.10.pp.018-027

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2021.10.pp.018-027

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования