DOI: 10.14489/td.2021.11.pp.010-020
Коновалов А. М., Кугушев В. И. МОДЕЛЬ МЕХАНИЗМА ПРЕОБРАЗОВАНИЯ ВНЕШНЕГО ВОЗДЕЙСТВИЯ В СОБСТВЕННЫЕ КОЛЕБАНИЯ (c. 10-20)
Аннотация. Представлена геометрическая интерпретация математической модели, цель которой дать конкретное описание процесса преобразования внешнего динамического воздействия в собственные колебания детали. Помимо геометрических построений суть модели состоит еще и в строгой логике, согласно которой модель не имеет материального воплощения. Тем не менее она является функциональным пространством, в котором формируется процесс и накапливается энергия собственных колебаний, т.е. модель является нематериальным носителем свободной энергии упругих колебаний. Материальным носителем является сама деталь. Модель представляет собой риманово пространство, в котором все динамические параметры постоянны и приведены к нулю, поэтому она, с одной стороны, как бы не имеет физического воплощения. С другой стороны, по своей сути модель является необходимым расширением функционального пространства, позволяющего на качественном уровне получить объяснение ряда процессов, которые наблюдаются экспериментально, но до сих пор не имели конкретного физического обоснования. Предлагаемая модель может быть эффективным инструментом анализа процессов, имеющих место в неразрушающем контроле и вибродиагностике. Дано теоретическое обоснование процесса моделирования наличия трещин в методах неразрушающего контроля, использующих собственные колебания контролируемого объекта. Также представлен вывод формулы, определяющей величину трещины, выявляемой этими методами.
Ключевые слова: математическая модель, собственные колебания, свободная энергия, волновое уравнение, неразрушающий контроль.
Konovalov А. M., Kugushev V. I. MODEL OF MECHANISM OF CONVERSION OF EXTERNAL ACTION INTO NATURAL OSCILLATIONS (pp. 10-20)
Abstract. The work presents a geometrical interpretation of a mathematical model intended to give a specific description of the process of conversion of external dynamic action into natural oscillations of a part. Besides geometrical constructions, the essence of the model stems from the strict logic as well, following which the model does not have a tangible embodiment. Nonetheless, it is a function space, in which the process is being generated and energy of natural oscillations is getting accumulated, i.e. the model is an non-material carrier of free energy of elastic oscillations. Material carrier is the very part. The model is represented as the Riemannian space, in which all dynamic parameters are constant and set to zero, therefore, on the one side, it appears as if it does not have any tangible embodiment. On the other side, by nature, the model is a necessary expansion of the function space, which, on the qualitative level, allows to obtain explanation of a number of processes, which are observed experimentally, but to this day were not provided with a specific substantiation from a physics perspective. The proposed model can be an effective tool for analysis of processes, occurring in the course of non-destructive testing and vibration-based diagnostics. For example, the Article presents a theoretical justification of the process of modelling of cracks in the non-destructive testing methods, using natural oscillations of the item being checked. On top of that, it gives a derivation of the formula determining amount of the crack detected through these methods.
Keywords: mathematical model, natural oscillations, free energy, wave equation, non-destructive testing.
А. М. Коновалов, В. И. Кугушев (АО ЦКБ МТ «Рубин», Санкт-Петербург, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. M. Konovalov, V. I. Kugushev (Jointstock company “CDB ME “Rubin”, St-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Зукас Дж. А., Николас Т., Свифт Х. Ф. и др. Динамика удара: пер. с англ. М.: Мир, 1985. 296 с. 2. Ершов Н. Ф., Попов А. Н. Прочность судовых конструкций при локальных динамических нагружениях. Л.: Судостроение, 1989. 200 с. 3. Иванов А. П. Динамика систем с механическими соударениями. М.: Международная программа образования, 1997. 336 с. 4. Кобылкин И. Ф., Селиванов В. В., Соловьев В. С., Сысоев Н. Н. Ударные и детонационные волны. Методы исследования. 2-е изд., перераб. и доп. М.: Физматлит, 2004. 376 с. 5. Бармасов А. В., Холмогоров В. Е. Курс общей физики для природопользователей. Механика: учеб. пособие. СПб.: БХВ-Петербург, 2008. 416 с. 6. Карпова Н. В. Классическая теория удара и ее применение к решению прикладных задач: монография. 2-е изд., испр. и доп. СПб.: Петербургский гос. ун-т путей сообщения, 2009. 208 с. 7. Морозов Е. М., Зернин М. В. Контактные задачи механики разрушения. М.: ЛИБРОКОМ, 2017. 544 с. 8. Молотников В. Я. Техническая механика: учеб. пособие для вузов. 2-е изд., стер. СПб.: Лань, 2021. 476 с. 9. Горшков А. Г., Медведский А. Л., Рабинский Л. Н., Тарлаковский Д. В. Волны в сплошных средах: учеб. пособие для вузов. М.: Физматлит, 2004. 472 с. 10. Бабаков И. М. Теория колебаний: учеб. пособие. 4-е изд., испр. М.: Дрофа, 2004. 591 с. 11. Порубов А. В. Локализация нелинейных волн деформации. Асимптотические и численные методы исследования. М.: Физматлит, 2009. 208 с. 12. Михасев Г. И., Товстик П. Е. Локализованные колебания и волны в тонких оболочках. Асимптотические методы. М.: Физматлит, 2009. 292 с. 13. Ахтямов А. М. Теория идентификации краевых условий и ее приложения. М.: Физматлит, 2009. 272 с. 14. Радин В. П., Самогин Ю. Н., Чирков В. П. Метод конечных элементов в динамических задачах сопротивления материалов. М.: Физматлит, 2013. 316 с. 15. Фридман В. М. Теория упругих колебаний. Уравнения и методы. СПб.: Наука, 2014. 254 с. 16. Маневич Л. И., Гендельман О. В. Аналитически разрешимые модели механики твердого тела. М.–Ижевск: Институт компьютерных исследований, 2016. 344 с. 17. Арнольд В. И., Козлов В. В., Нейштадт А. И. Математические аспекты классической и небесной механики. М.: Едиториал УРСС, 2017. 416 с. 18. Ватульян А. О. Коэффициентные обратные задачи механики. М.: Физматлит, 2019. 272 с. 19. Ланда П. С. Автоколебания в распределенных системах. М.: ЛИБРОКОМ, 2019. 320 с. 20. Журавлев В. Ф., Петров А. Г., Шундерюк М. М. Избранные задачи гамильтоновой механики. М.: ЛЕНАНД, 2021. 304 с. 21. Бураго Ю. Д., Залгаллер В. А. Введение в риманову геометрию / отв. ред. А. Д. Александров. 2-е изд. М.: Ленанд, 2019. 320 с. 22. Манфредо до Кармо. Риманова геометрия. Ижевск: НИЦ «Регулярная и хаотическая динамика»; Институт компьютерных исследований, 2015. 316 с. 23. Коновалов А. М., Кугушев В. И., Яковлев А. Ю. Результаты экспериментального исследования процесса перераспределения энергии собственных колебаний под воздействием демпфирующих факторов // Контроль. Диагностика. 2019. № 5. С. 46 – 51. 24. Броек Д. Основы механики разрушения: пер. с англ. М.: Высш. шк., 1980. 368 с.
1. Zukas Dzh. A., Nikolas T., Svift H. F. et al. (1985). Impact dynamics. Moscow: Mir. [in Russian language] 2. Ershov N. F., Popov A. N. (1989). Strength of ship structures under local dynamic loading. Leningrad: Sudostroenie. [in Russian language] 3. Ivanov A. P. (1997). Dynamics of systems with mechanical collisions. Moscow: Mezhdunarodnaya programma obrazovaniya. [in Russian language] 4. Kobylkin I. F., Selivanov V. V., Solov'ev V. S., Sysoev N. N. (2004). Shock and detonation waves. Research methods. 2nd ed. Moscow: Fizmatlit. [in Russian language] 5. Barmasov A. V., Holmogorov V. E. (2008). General physics course for nature users. Mechanics: a textboook. Saint Petersburg: BHV-Peterburg. [in Russian language] 6. Karpova N. V. (2009). The classical theory of impact and its application to the solution of applied problems: monograph. 2nd ed. Saint Petersburg: Peterburgskiy gosudarstvenniy universitet putey soobshcheniya. [in Russian language] 7. Morozov E. M., Zernin M. V. (2017). Contact problems of fracture mechanics. Moscow: LIBROKOM. [in Russian language] 8. Molotnikov V. Ya. (2021). Technical mechanics: textbook for universities. 2nd ed. Saint Petersburg: Lan'. [in Russian language] 9. Gorshkov A. G., Medvedskiy A. L., Rabinskiy L. N., Tarlakovskiy D. V. (2004). Waves in continuous media: a textbook for universities. Moscow: Fizmatlit. [in Russian language] 10. Babakov I. M. (2004). Oscillation theory: a textbook. 4th ed. Moscow: Drofa. [in Russian language] 11. Porubov A. V. (2009). Localization of nonlinear strain waves. Asymptotic and numerical research methods. Moscow: Fizmatlit. [in Russian language] 12. Mihasev G. I., Tovstik P. E. (2009). Localized vibrations and waves in thin shells. Asymptotic Methods. Moscow: Fizmatlit. [in Russian language] 13. Ahtyamov A. M. (2009). The theory of identification of boundary conditions and its applications. Moscow: Fizmatlit. [in Russian language] 14. Radin V. P., Samogin Yu. N., Chirkov V. P. (2013). Finite element method in dynamic problems of material resistance. Moscow: Fizmatlit. [in Russian language] 15. Fridman V. M. (2014). The theory of elastic vibrations. Equations and Methods. Saint Petersburg: Nauka. [in Russian language] 16. Manevich L. I., Gendel'man O. V. (2016). Analytically solvable models of rigid body mechanics. Moscow–Izhevsk: Institut komp'yuternyh issledovaniy. [in Russian language] 17. Arnol'd V. I., Kozlov V. V., Neyshtadt A. I. (2017). Mathematical aspects of classical and celestial mechanics. Moscow: Editorial URSS. [in Russian language] 18. Vatul'yan A. O. (2019). Coefficient inverse problems of mechanics. Moscow: Fizmatlit. [in Russian language] 19. Landa P. S. (2019). Self-oscillations in distributed systems. Moscow: LIBROKOM. [in Russian language] 20. Zhuravlev V. F., Petrov A. G., Shunderyuk M. M. (2021). Selected problems of Hamiltonian mechanics. Moscow: LENAND. [in Russian language] 21. Aleksandrov A. D. (Ed.), Burago Yu. D., Zalgaller V. A. (2019). Introduction to Riemannian geometry. 2nd ed. Moscow: LENAND. [in Russian language] 22. Manfredo do Karmo. (2015). Riemannian geometry. Izhevsk: NITs «Regulyarnaya i haoticheskaya dinamika»; Institut komp'yuternyh issledovaniy. [in Russian language] 23. Konovalov A. M., Kugushev V. I., Yakovlev A. Yu. (2019). Results of an experimental study of the process of natural vibration energy redistribution under the influence of damping factors. Kontrol'. Diagnostika, (5), pp. 46 – 51. [in Russian language] DOI: 10.14489/td.2019.05.pp.046-051 24. Broek D. (1980). Fundamentals of fracture mechanics. Moscow: Vysshaya shkola. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 450 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2021.11.pp.010-020
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 450 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2021.11.pp.010-020
and fill out the form
.
|