Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 11 | 2024
2022, 02 February

DOI: 10.14489/td.2022.02.pp.034-040

Kazakov V. V.
OPERATIONAL CONTROL OF THE ABRASIVE WHEEL USING AN ULTRASONIC VIBROMETER
(pp. 34-40)

Abstract. The paper considers the use of an ultrasonic phase vibration meter (ultrasonic vibrometer) for operational contactless control of the geometry of the working surface and the beating of abrasive wheels. For this objects, the vibrometer sensor is fixed in a tripod, set at a distance of 15…25 mm from the working surface of the wheel, and the change in distance to it is continuously measured. To fix the angular coordinate, a removable mark is applied to the surface of the wheel. The measurement results are recorded and processed in a computer. The results of diagnostics of wheels, which have been used for a long time for processing metal products, are presented.

Keywords: measurement of the geometry of the abrasive wheel, determination of the wheel beating, ultrasonic vibrometer.

V. V. Kazakov (Federal research center Institute of Applied Physics of the RAS (IAP RAS), Nizhny Novgorod, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Uaythauz D. (2009). Metrology of surfaces. Principles, Industrial Methods and Instruments: Scientific Edition. Dolgoprudniy: ID «Intellekt». [in Russian language]
2. Gebel' I. D., Timofeev B. P., Mlokosevich S. Yu. (2003). Shaft out-of-roundness measurement. Nauchno-tekhnicheskiy vestnik informatsionnyh tekhnologiy, mekhaniki i optiki, Vol. 3, (3), pp. 154 – 158. [in Russian language]
3. Zaharov O. V., Brzhozovskiy B. M. (2006). Measuring out-of-roundness using harmonic analysis. Kontrol'. Diagnostika, (1), pp. 49 – 51. [in Russian language]
4. Poroshin V. V., Bogomolov D. Yu., Radygin V. Yu. (2006). Hardware-software complex for three-dimensional analysis of a wavy surface. Mashinostroenie i inzhenernoe obrazovanie, (2), pp. 26 – 39. [in Russian language]
5. Zaharov O. V. (2010). Centerless measurement of out-of-roundness of bodies of revolution. Kontrol'. Diagnostika, (12), pp. 69 – 72. [in Russian language]
6. Kanne M. M. (2018). Fundamentals of research, invention and innovation in mechanical engineering: textbook. Minsk: Vysheyshaya shkola. [in Russian language]
7. Timofeev B. P., Mlokosevich S. Yu. (2006). Methods and means of measuring non-circularity and non-cylindrical. Nauchno-tekhnicheskiy vestnik informatsionnyh tekhnologiy, mekhaniki i optiki, Vol. 6, (8), pp. 249 – 254. [in Russian language]
8. Ryzhevich A. A., Solonevich S. V., Hilo N. A., Leparskiy V. E. (2011). Laser profilometer for determining surface quality. Proceedings 9th International Conference "Interaction of Radiation with Solids", pp. 448 – 450. Minsk: Izdatel'skiy tsentr BGU. [in Russian language]
9. Kazakov V. V. (1989). Ultrasonic phase vibration displacement meters. Vibroacoustic fields of complex objects and their diagnostics: collection of works, pp. 178 – 190. Gor'kiy: IPF AN SSSR. [in Russian language]
10. Licznerski T. J., Jaronski J., Kosz D. (2011). Ultrasonic System for Accurate Distance Measurement in the air. Ultrasonics, Vol. 51, pp. 960 – 965.
11. Matar O., Remenieras J., Bruneel C. et al. (1998). Noncontact Measurement of Vibration Using Airborne Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, (3), pp. 626 – 633.
12. Tsai W.-Y., Chen H.-C., Liao T.-L. (2006). High Accuracy ultrasonic air Temperature Measurement Using Multi-Frequency Continuous Wave. Sensors and Actuators, Vol. A 132, pp. 526 – 532.
13. Wang Y., Mingotaud C., Patterson L. K. (1991). Noncontact Monitoring of Liquid Surface Levels with a Precision of 10 Micrometers: A Simple ultrasound Device. Review of Scientific Instruments, Vol. 62, (6), pp. 1640 – 1641.
14. Cretin B., Vairac P., Jachez N. et al. (2007). Sensitive Ultrasonic Vibrometer for Very Low Frequency Applications. Review of Scientific Instruments, Vol. 78, (3).
15. Sasaki K., Nishihira M., Imano K. (2004). Submicrometer-Order Displacement Measurements Using an Air-Coupled Ultrasonic Transducer at Frequencies of 40 and 400 kHz. Japanese Journal of Applied Physics, Vol. 43, (5B), pp. 3071 – 3075.
16. Sasaki K., Nishihira M., Imano K. (2004). Improved Phase-Detection Method Using an Air-Coupled Ultrasonic wave for a Few-Tens of Nanometers Displacement Measurements. IEICE Electronics Express, Vol. 1, 15, pp. 472 – 476.
17. Kazakov V. V. (2009). Ultrasonic Phase Vibration Meter for Vibration Diagnostics. Datchiki i sistemy, (11), pp. 39 – 42. [in Russian language]
18. Figueroa F., Barbieri E. (1991). Increased Meas-urement Range via Frequency Division in Ultrasonic Phase Detection Methods. Acustica, Vol. 73, (1), pp. 47 – 49.
19. Zhiganov I. Yu. (2004). Non-contact devices for measuring the geometric parameters of pipes. Moscow: Vuzovskaya kniga. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.02.pp.034-040

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования