Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2022, 06 июнь (June)

DOI: 10.14489/td.2022.06.pp.038-047

Алтай Е., Федоров А. В., Степанова К. А.
ОЦЕНКА ВЗАИМОСВЯЗИ ИНФОРМАЦИОННЫХ СОСТАВЛЯЮЩИХ И ПОМЕХ СИГНАЛОВ АКУСТИЧЕСКОЙ ЭМИССИИ
(с. 38-47)

Аннотация. Представлен метод обработки акустической информации для оценки корреляционной взаимосвязи информационных составляющих и помех сигналов акустической эмиссии (АЭ). Метод основан на полиномиальной аппроксимации двунаправленных фильтров верхних и нижних частот Баттерворта. Проанализирована работоспособность метода обработки на натурных образцах зашумленного сигнала АЭ и на основе количественных показателей проведена оценка полученной обработки. Установлено, что двунаправленная реализация фильтров верхних частот повышает качество обработки при сравнении с фильтром нижних частот. Для оценки корреляционной взаимосвязи с помощью рассматриваемого метода обработки из зашумленного сигнала выделены фрагменты информационной составляющей и помех. На основе выделенных составляющих установлена высокая корреляционная взаимосвязь между информационными сигналами АЭ и помехами.

Ключевые слова:  акустический контроль, обработка сигналов акустической эмиссии, корреляционная взаимосвязь, отношение сигнал/помеха.

 

Altay Ye., Fedorov A. V., Stepanova K. A.
ESTIMATION OF RELATIONSHIP BETWEEN INFORMATION COMPONENTS AND NOISE OF ACOUSTIC EMISSION SIGNALS
(pp. 38-47)

Abstract. In this article, a method for processing acoustic information is presented to assess the correlation relationship of information components and noise of acoustic emission (AE) signals. The method is based on a polynomial approximation of bidirectional Butterworth high and low pass filters. The operability of the processing method on full-scale samples of the noisy AE signal is analyzed and the evaluation of the received processing is carried out on the basis of quantitative indicators. Bidirectional implementation of high-pass filters improves the quality of processing when compared with a low-pass filter. To assess the correlation relationship using the considered processing method, fragments of the information component and noise are isolated from the noisy signal. Based on the selected components, a high correlation relationship between AE information signals and noise has been established.

Keywords: аcoustic control, acoustic emission signals processing, correlation relationship, signal-to-noise ratio.

Рус

Е. Алтай, А. В. Федоров, К. А. Степанова (Национальный исследовательский университет ИТМО, Санкт-Петербург, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

Ye. Altay, A. V. Fedorov, K. A. Stepanova (National Research ITMO University. Saint-Petersburg, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. He Y. An Overview of Acoustic Emission Inspection and Monitoring Technology in the Key Components of Renewable Energy Systems // Mechanical Systems and Signal Processing. 2021. V. 148. P. 107146.
2. Zhao L., Kang L., Yao S. Research and Application of Acoustic Emission Signal Processing Technology // IEEE Access. 2019. V. 7. P. 984 – 993.
3. Бехер С. А., Бобров А. Л. Основы неразрушающего контроля методом акустической эмиссии / под ред. Л. Н. Степановой. Новосибирск: СГУПС, 2013. 145 с.
4. Бехер С. А. Методы контроля динамически нагруженных элементов подвижного состава при ремонте и в эксплуатации на основе комплексного использования тензометрии и акустической эмиссии: автореф. дис. … д-ра техн. наук: 05.11.13. Томск, 2017. 36 с.
5. Степанова К. А. Разработка методики акустико-эмиссионного контроля дефектообразования в процессе формирования соединения сваркой трением с перемешиванием: автореф. дис. … канд. техн. наук: 05.11.13. СПб., 2020. 20 с.
6. Кузьмин А. Н., Иноземцев В. В., Прохоровский А. С. и др. Технология беспороговой регистрации данных акустической эмиссии при контроле промышленных объектов // Химическая техника. 2018. № 3. С. 10 – 17.
7. Измайлова Е. В. Информационно-измерительная система и метод контроля трубопроводов на основе вейвлет-фильтрации сигналов акустической эмиссии: автореф. дис. … канд. техн. наук: 05.11.13. Казань, 2013. 16 с.
8. Kharrat M. А. A Signal Processing Approach for Enhanced Acoustic Emission Data Analysis in High Activity Systems: Application to Organic Matrix Composites // Mechanical Systems and Signal Processing. 2016. V. 70. P. 1038 – 1055.
9. Il K. K., Hwan R. U., Pil C. B. An Appropriate Thresholding Method of Wavelet Denoising for Dropping Ambient Noise // International Journal of Wavelets, Multiresolution and Information Processing. 2018. V. 16. P. 1850012.
10. Beale C., Niezrecki C., Inalpolat M. An Adaptive Wavelet Packet Denoising Algorithm for Enhanced Active Acoustic Damage Detection from Wind Turbine Blades // Mechanical Systems and Signal Processing. 2020. V. 142. P. 106754.
11. Barat V., Borodin Y., Kuzmin A. Intelligent AE Signal Filtering Methods // Journal of Acoustic Emission. 2010. V. 28. P. 109 – 119.
12. Ferrando C., Juan L. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals // Sensors. 2021. V. 21. P. 5984.
13. Barile C. Acoustic Emission Descriptors for the Mechanical Behavior of Selective Laser Melted Samples: An Innovative Approach // Mechanics of Materials. 2020. V. 148. P. 103448.
14. Makhutov N. A., Vasiliev I. E., Chernov D. V., et al. Influence of the passband of frequency filters on the parameters of acoustic emission pulses // Russian Journal of Nondestructive Testing. 2019. V. 55. P. 173 – 180.
15. Ito K. Detection and Location of Microdefects During Selective Laser Melting by Wireless Acoustic Emission Measurement // Additive Manufacturing. 2021. V. 40. P. 101915.
16. Altay Y. A., Fedorov A. V., Stepanova K. A. Acoustic emission signal processing based on polynomial filtering method // Proc. of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. 2022. P. 1320 – 1326.
17. Степанова Л. Н., Рамазанов И. С., Кабанов С. И. Использование вейвлет-фильтрации для локализации сигналов акустической эмиссии // Контроль. Диагностика. 2007. № 9. С. 27 – 31.
18. Rakshit M., Das S. An Efficient ECG Denoising Methodology Using Empirical Mode Decomposition and Adaptive Switching Mean Filter // Biomedical Signal Processing and Control. 2018. V. 40. P. 140 – 148.
19. Altay Y.A., Kremlev A. S. Signal-to-Noise Ratio and Mean Square Error Improving Algorithms Based on Newton Filters for Measurement ECG Data Processing // Proc. of the 2021 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering. Moscow, 26 – 28 Jan. 2021. M., 2021. P. 1590 – 1595.
20. Щегольский И. А. Синтез рекурсивных цифровых фильтров методами оптимизации на основе полиномиальной аппроксимации: автореф. дис. … канд. техн. наук: 05.13.01. Томск, 2004. 20 с.
21. Paarman L. D. Design and Analysis of Analog Filters: a Signal Processing Perspective. Kluwer Academic Publishers, New-York, 2001. 440 р.
22. Егоров Р. А. Разработка алгоритмического и программно-технического обеспечения первичной обработки сигнала при динамическом индентировании: дис. … канд. тех. наук: 05.11.13. СПб., 2021. 254 с.
23. Матвеев Ю. Н., Симончик К. К., Тропченко А. Ю., Хитров М. В. Цифровая обработка сигналов. СПб.: СПбНИУ ИТМО, 2013. 166 с.
24. Richard L. G. Digital signal processing. Upper Saddle, 2006. 656 р.
25. Салин В. Н., Чурилова Э. Ю. Практикум по курсу «Статистика». М.: Перспектива, 2002. 188 с.

Eng

1. He Y. (2021). An Overview of Acoustic Emission Inspection and Monitoring Technology in the Key Components of Renewable Energy Systems. Mechanical Systems and Signal Processing, Vol. 148.
2. Zhao L., Kang L., Yao S. (2019). Research and Application of Acoustic Emission Signal Processing Technology. IEEE Access, Vol. 7, pp. 984 – 993.
3. Stepanova L. N. (Ed.), Bekher S. A., Bobrov A. L. (2013). Fundamentals of non-destructive testing by acoustic emission. Novosibirsk: SGUPS. [in Russian language]
4. Bekher S. A. (2017). Methods for monitoring dynamically loaded rolling stock elements during repair and operation based on the integrated use of strain gauge and acoustic emission. Tomsk. [in Russian language]
5. Stepanova K. A. (2020). Development of a Method for Acoustic Emission Control of Defect Formation in the Process of Joint Formation by Friction Stir Welding. Saint Petersburg. [in Russian language]
6. Kuz'min A. N., Inozemtsev V. V., Prohorovskiy A. S. et al. (2018). Technology of non-threshold registration of acoustic emission data in the control of industrial facilities. Himicheskaya tekhnika, (3), pp. 10 – 17. [in Russian language]
7. Izmaylova E. V. (2013). Information-measuring system and pipeline control method based on wavelet filtering of acoustic emission signals. Kazan'. [in Russian language]
8. Kharrat M. А. (2016). A Signal Processing Approach for Enhanced Acoustic Emission Data Analysis in High Activity Systems: Application to Organic Matrix Composites. Mechanical Systems and Signal Processing, Vol. 70, pp. 1038 – 1055.
9. Il K. K., Hwan R. U., Pil C. B. (2018). An Appropriate Thresholding Method of Wavelet Denoising for Dropping Ambient Noise. International Journal of Wavelets, Multiresolution and Information Processing, Vol. 16.
10. Beale C., Niezrecki C., Inalpolat M. (2020). An Adaptive Wavelet Packet Denoising Algorithm for Enhanced Active Acoustic Damage Detection from Wind Turbine Blades. Mechanical Systems and Signal Processing, Vol. 142.
11. Barat V., Borodin Y., Kuzmin A. (2010). Intelligent AE Signal Filtering Methods. Journal of Acoustic Emission, Vol. 28, pp. 109 – 119.
12. Ferrando C., Juan L. (2021). A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals. Sensors, Vol. 21.
13. Barile C. (2020). Acoustic Emission Descriptors for the Mechanical Behavior of Selective Laser Melted Samples: An Innovative Approach. Mechanics of Materials, Vol. 148.
14. Makhutov N. A., Vasiliev I. E., Chernov D. V. et al. (2019). Influence of the passband of frequency filters on the parameters of acoustic emission pulses. Russian Journal of Nondestructive Testing, Vol. 55, pp. 173 – 180.
15. Ito K. (2021). Detection and Location of Microdefects During Selective Laser Melting by Wireless Acoustic Emission Measurement. Additive Manufacturing, Vol. 40.
16. Altay Y. A., Fedorov A. V., Stepanova K. A. (2022). Acoustic emission signal processing based on polynomial filtering method. Proceedings of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp. 1320 – 1326.
17. Stepanova L. N., Ramazanov I. S., Kabanov S. I. (2007). Using Wavelet Filtering to Localize Acoustic Emission Signals. Kontrol'. Diagnostika, (9), pp. 27 – 31. [in Russian language]
18. Rakshit M., Das S. (2018). An Efficient ECG Denoising Methodology Using Empirical Mode Decomposition and Adaptive Switching Mean Filter. Biomedical Signal Processing and Control, Vol. 40, pp. 140 – 148.
19. Altay Y.A., Kremlev A. S. (2021). Signal-to-Noise Ratio and Mean Square Error Improving Algorithms Based on Newton Filters for Measurement ECG Data Processing. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp. 1590 – 1595. Moscow.
20. Shchegol'skiy I. A. (2004). Synthesis of Recursive Digital Filters by Optimization Methods Based on Polynomial Approximation. Tomsk. [in Russian language]
21. Paarman L. D. (2001). Design and Analysis of Analog Filters: a Signal Processing Perspective. New-York: Kluwer Academic Publishers.
22. Egorov R. A. (2021). Development of algorithmic and software-hardware support for primary signal processing during dynamic indentation. Saint Petersburg. [in Russian language]
23. Matveev Yu. N., Simonchik K. K., Tropchenko A. Yu., Hitrov M. V. (2013). Digital signal processing. Saint Petersburg: SPbNIU ITMO. [in Russian language]
24. Richard L. G. (2006). Digital signal processing. Upper Saddle.
25. Salin V. N., Churilova E. Yu. (2002). Workshop on the course "Statistics". Moscow: Perspektiva. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.06.pp.038-047

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.06.pp.038-047

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования