Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
10 | 01 | 2025
2022, 07 июль (July)

DOI: 10.14489/td.2022.07.pp.050-055

Кадим М. Х., Русинов Л. А.
АВТОМАТИЧЕСКОЕ ОБНАРУЖЕНИЕ ПОВЕРХНОСТНЫХ ДЕФЕКТОВ КЕРАМИЧЕСКОЙ ПЛИТКИ
(с. 50-55)

Аннотация. Керамическая плитка является одним из наиболее востребованных отделочных материалов, при этом области ее применения постоянно расширяются. Производство керамической плитки достаточно хорошо автоматизировано, но контроль готовой плитки на наличие дефектов обычно не автоматизирован, что ограничивает его скорость и не гарантирует необходимого качества. Предлагается алгоритм обнаружения основных дефектов поверхности керамической плитки, а именно механических (царапины, трещины и т.д.), геометрических (сколы по углам, выщербины или выступы по краям), цветовых дефектов (блобы, пятна и т.д.). Алгоритм основан на цифровой обработке изображений плиток и был реализован с использованием открытой библиотеки алгоритмических примитивов OpenCV. Алгоритм не требует представления эталонных плиток. При этом обеспечивается высокая скорость классификации монохромных плиток на годные и бракованные, что позволяет организовать автоматический контроль однотонных плиток на конвейере в режиме реального времени с вероятностью правильного обнаружения 97 %.

Ключевые слова:  керамическая плитка, обработка изображений, обнаружение дефектов, контроль качества.

 

Kadhim M. Kh., Rusinov L. A.
AUTOMATIC DETECTION OF SURFACE DEFECTS OF CERAMIC TILES
(pp. 50-55)

Abstract. Ceramic tiles are one of the most demanded finishing materials, and the areas of their use are constantly expanding. The production of ceramic tiles is quite well automated, but the control of manufactured tiles for defects is usually not automated, that limits its speed and does not guarantee the necessary quality. The algorithm for detecting the main surface defects of ceramic tiles, namely, mechanical (scratches, cracks, etc.), geometric (chips on the corners, gouges or protrusions on the edges), color defects (blobs, spots, etc.) is proposed in the paper. It based on digital image processing of tiles and was implemented using the free library of algorithmic primitives OpenCV. The algorithm does not require the presentation of reference tiles. At the same time, a high speed of classifying monochrome tiles into fresh and defective ones is ensured and allows to organize the automatic control of plain tiles on the conveyor in real time with the probability of correct detections 97 %.

Keywords: сeramic tile, image processing, defect detection, quality control.

Рус

М. Х. Кадим, Л. А. Русинов (Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия) E-mail: mokadhim@yandex.ruДанный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , lrusinov@yandex.ruДанный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

M. Kh. Kadhim, L. A. Rusinov (Saint-Petersburg State Institute of Technology (Technical University), Saint Petersburg, Russia) E-mail: mokadhim@yandex.ruДанный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , lrusinov@yandex.ruДанный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Информационно-технический справочник по наилучшим доступным технологиям «Производство керамических изделий» ИПС 1-2015. М.: Бюро НДТ, 2015. 235 с. URL: https://files.stroyinf.ru/Data2/1/4293757/4293757770.pdf (дaтa обращения: 05.03.2022 г.)
2. Ozkan F., Ulutas B. Use of an Eye-Tracker to Assess Workers in Ceramic Tile Surface Defect Detection // International Conference on Control, Decision and Information Technologies (CoDIT), 2016. P. 088 – 091. DOI 10.1109/CoDIT.2016.7593540.
3. ГОСТ 13996–2019. Плитки керамические. Общие технические условия (ISO 13006: 2018, NEQ). M.: Стандартинформ, 2019. 41 c.
4. Czimmermann T., Ciuti G., Milazzo M., et al. Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY // Sensors, 2020. V. 20, No. 5. 1459. 25 р. DOI 10.3390/s200514592.
5. Karhe R. R., Nagare N. N. A Survey on Automatic Defect Detection & Classification Technique from Image: A Special Case Using Ceramic Tiles // International Journal of Advance Engineering and Research Development. 2017. V. 4, No. 12. P. 1027 – 1034.
6. Tsarouhas P. H., Arampatzaki D. Application of Failure Modes and Effects Analysis (FMEA) of a Ceramic Tiles Manufacturing Plant // St Olympus International Conference On Supply Chains, 1 – 2 Oct. 2010, Katerini, Greece. URL: https://www.researchgate.net/publication/267405062_Application_of_Failure_Modes_and_Effects_Analysis_FMEA_of_a_Ceramic_Tiles_Manufacturing_Plant (дaтa обращения: 01.03.2022 г.)
7. Hussain Z. Optimizing Productivity by Eliminating and Managing Rejection Frequency Using 5s and Kaizens Practices: Case Study // Independent Journal of Management & Production (IJM&P). 2019. V. 10, No. 6. P. 1953 – 1970. DOI 10.14807/ijmp.v10i6.943. URL: http://creativecommons.org/licenses/by/3.0/us/ (дaтa обращения: 01.03.2022 г.)
8. Shah H. N. M., Kee Y. Sh., Kamis Z., et al. Automated Quality Inspection on Tile Border Detection Using Vision System // International Journal of Recent Technology and Engineering (IJRTE), 2019. V. 8, No. 3. Р. 3737 – 3745. DOI 10.35940/ijrte.C3983.098319.
9. Грузман И. С., Киричук В. С., Косых В. П. и др. Цифровая обработка изображений в информационных системах. Новосибирcк: Изд-во НГТУ, 2000. 168 с.
10. Mishra R., Shukla D. A Survey on Various Defect Detection // International Journal of Engineering Trends and Technology (IJETT). 2014. V. 10, No. 13. P. 643 – 648.
11. Surface inspection. URL: https://sacmi.com/SacmiCorporate/media/ceramics/Catalogues/CTQF_Processmaster_-Flawmaster_Advancheck-Newcheck_NUOVASIMA_EN-IT-ES.pdf (дaтa обращения: 20.02.2022 г.)
12. Гонсалес Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с.
13. Contour Features. URL: https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html (дaтa обращения: 15.03.2022 г.)
14. CV2 Boundingrect Explained with Examples. URL: https://www.pythonpool.com/cv2-boundingrect/ (дата обращения: 15.03.2022 г.)
15. Image Rotation and Translation Using OpenCV. URL: Image Rotation and Translation Using OpenCV | LearnOpenCV # (дата обращения: 15.03.2022 г.)
16. Adaptive Brightness Contrast Adjustment. URL: https://www.programmersought.com/article/9935110603/ (дата обращения: 01.07.2021 г.)
17. Dnyandeo S. V., Nipanikar R. S. A Review of Adaptive Thresholding Techniques for Vehicle Number Plate Recognition // International Journal of Advanced Research in Computer and Communication Engineering. 2016. V. 5, No. 4. P. 944 – 946.

Eng

1. Information and technical guide on the best available technologies "Production of ceramic products" IPS 1-2015. (2015). Moscow: Byuro NDT. Available at: https://files.stroyinf.ru/Data2/1/4293757/4293757770.pdf (Accessed: 05.03.2022.) [in Russian language]
2. Ozkan F., Ulutas B. (2016). Use of an Eye-Tracker to Assess Workers in Ceramic Tile Surface Defect Detection. International Conference on Control, Decision and Information Technologies (CoDIT), pp. 088 – 091. DOI 10.1109/CoDIT.2016.7593540.
3. Tiles are ceramic. General specifications. (2019). Ru Standard No. GOST 13996–2019. Moscow: Standartinform. [in Russian language]
4. Czimmermann T., Ciuti G., Milazzo M. et al. (2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY. Sensors, Vol. 20, (5). DOI 10.3390/s200514592.
5. Karhe R. R., Nagare N. N. (2017). A Survey on Automatic Defect Detection & Classification Technique from Image: A Special Case Using Ceramic Tiles. International Journal of Advance Engineering and Research Development, Vol. 4, (12), pp. 1027 – 1034.
6. Tsarouhas P. H., Arampatzaki D. (2010). Application of Failure Modes and Effects Analysis (FMEA) of a Ceramic Tiles Manufacturing Plant. St Olympus International Conference On Supply Chains. Katerini. Available at: https://www.researchgate.net/publication/267405062_Application_of_Failure_Modes_and_Effects_Analysis_FMEA_of_a_Ceramic_Tiles_Manufacturing_Plant (Accessed: 01.03.2022.)
7. Hussain Z. (2019). Optimizing Productivity by Eliminating and Managing Rejection Frequency Using 5s and Kaizens Practices: Case Study. Independent Journal of Management & Production (IJM&P), Vol. 10, (6), pp. 1953 – 1970. Available at: http://creativecommons.org/licenses/by/3.0/us/ (Accessed: 01.03.2022.) DOI 10.14807/ijmp.v10i6.943.
8. Shah H. N. M., Kee Y. Sh., Kamis Z. et al. (2019). Automated Quality Inspection on Tile Border Detection Using Vision System. International Journal of Recent Technology and Engineering (IJRTE), Vol. 8, (3), pp. 3737 – 3745. DOI 10.35940/ijrte.C3983.098319.
9. Gruzman I. S., Kirichuk V. S., Kosyh V. P. et al. (2000). Digital image processing in information systems. Novosibirck: Izdatel'stvo NGTU. [in Russian language]
10. Mishra R., Shukla D. (2014). A Survey on Various Defect Detection. International Journal of Engineering Trends and Technology (IJETT), Vol. 10, 13, pp. 643 – 648.
11. Surface inspection. Available at: https://sacmi.com/SacmiCorporate/media/ceramics/Catalogues/CTQF_Processmaster_-Flawmaster_Advancheck-Newcheck_NUOVASIMA_EN-IT-ES.pdf (Accessed: 20.02.2022.)
12. Gonsales R. (2012). Digital image processing. Moscow: Tekhnosfera. [in Russian language]
13. Contour Features. Available at: https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html (Accessed: 15.03.2022.)
14. CV2 Boundingrect Explained with Examples. Available at: https://www.pythonpool.com/cv2-boundin-grect/ (Accessed: 15.03.2022.)
15. Image Rotation and Translation Using OpenCV. Available at: Image Rotation and Translation Using OpenCV | LearnOpenCV # (Accessed: 15.03.2022.)
16. Adaptive Brightness Contrast Adjustment. Available at: https://www.programmersought.com/article/9935110603/ (Accessed: 01.07.2021.)
17. Dnyandeo S. V., Nipanikar R. S. (2016). A Review of Adaptive Thresholding Techniques for Vehicle Number Plate Recognition. International Journal of Advanced Research in Computer and Communication Engineering, Vol. 5, (4), pp. 944 – 946.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.07.pp.050-055

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.07.pp.050-055

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования